First-principles calculations of local structure and electronic properties of Er<sup>3+</sup>-doped TiO<sub>2</sub>

Author:

Chen Guang-Ping,Yang Jin-Ni,Qiao Chang-Bing,Huang Lu-Jun,Yu Jing, , ,

Abstract

Trivalent rare earth erbium ion (Er<sup>3+</sup>) doped titanium oxide (TiO<sub>2</sub>) can possess a very wide range of applications due to its excellent optoelectronic properties, thus standing out among many rare-earth-doped luminescent crystals. However, the issues regarding local structure and electronic properties have not been finalized. To address these problems, the CALYPSO (Crystal structure AnaLYsis by Particle Swarm Optimization) method combined with the first-principles calculations is employed, and many converged structures of Er<sup>3+</sup>-doped TiO<sub>2</sub> are successfully obtained. Further structural optimization is performed by using the VASP (Vienna <i>ab initio</i> simulation package) software package, and we report for the first time that the lowest energy structure of Er<sup>3+</sup>-doped TiO<sub>2</sub> has the <inline-formula><tex-math id="M2">\begin{document}$ P\overline 4 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221847_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221847_M2.png"/></alternatives></inline-formula><i>m</i>2 symmetry. It can be observed that the doped Er<sup>3+</sup> ions enter into the host crystal and occupy the positions of Ti<sup>4+</sup> ions, resulting in structural distortion, which eventually leads the local Er<sup>3+</sup> coordination site symmetry to reduce from <i>D</i><sub>2<i>d</i></sub> into <i>C</i><sub>2<i>v</i></sub>. We speculate that there are two reasons: 1) the difference in charge between Er<sup>3+</sup> ions and Ti<sup>4+</sup> ions leads to charge compensation; 2) the difference between their electron radii is obvious: the radius is 0.0881 for Er<sup>3+</sup> ion and 0.0881 for Ti<sup>4+</sup> ion. In addition, during the structural search, we also find many metastable structures that may exist at a special temperature or pressure, which play an important role in the studying of structural evolution. When the electronic band structure of the Er<sup>3+</sup>-doped TiO<sub>2</sub> system is calculated, we adopt the method of local density approximation (LDA) combined with the on-site Coulomb repulsion parameter <i>U</i> to accurately describe the strongly correlated system. For the specific value of <i>U</i>, we adopt 3.5 eV and 7.6 eV to describe the strong correlation of 3d electrons of Ti<sup>4+</sup> ions and 4f electrons of Er<sup>3+</sup> ions, respectively. According to the calculation of electronic properties, the band gap value of Er<sup>3+</sup> doped TiO<sub>2</sub> is about 2.27 eV, which is lower than that of the host crystal (<i>E</i><sub>g</sub> = 2.40 eV). The results show that the reduction in the band gap is mainly caused by the f state of Er<sup>3+</sup> ions. The doping of Er ion does reduce the band gap value, but it does not change the conductivity of the system, which have great application prospect in diode-pumped laser. These findings not only provide the data for further exploring the properties and applications of Er<sup>3+</sup>:TiO<sub>2</sub> crystals, but also present an approach to studying other rare-earth-doped crystalline materials.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3