Review on modeling polar sea-ice acoustics waveguide

Author:

Yin Jing-Wei,Ma Ding-Yi,Zhang Yu-Xiang,Sheng Xue-Li, , ,

Abstract

With the continued global warming, polar science has become one of the research hotspots. Regarding polar acoustics, much progress has been made due to the efforts made by scientists in the world. With the enhancement of stereoscopic monitoring capacity in polar regions, the acoustic theory and technologies applicable to Arctic sea-ice, which have long been overlooked as a branch of acoustics, are now dawning more and more attention. The propagation of elastic waves in the Arctic sea-ice is governed by its waveguide, and the understanding of which faces a grave challenge due to the unique material properties and complex internal structure of sea-ice, along with the asymmetric fluid-solid coupling at its boundaries and the inaccessibility for in-situ experiments, which is caused by the extreme condition. Aiming at an effectively and precisely modeling technique of acoustic propagation in sea-ice, including its waveguide, in this paper, the progress, the development, and the status of corresponding researches are reviewed. For a better understanding of the modeling of sea-ice, Arctic sea-ice, i.e. its formation condition, geometries, mechanical properties, microstructures, and the acoustic propagation, is briefly introduced. Different approaches to modeling the propagation of elastic waves in ice-floe based on explicit/implicit boundary conditions are presented and explained in detail. The resulting transcendental characteristic equation describing the acoustic propagation needs to be solved in a complex space for the severe energy leakage at the water-ice interface, and the necessary numerical methods of solving this equation are then explained and compared with each other. Since accurate parameters are imperative in having a satisfactory fidelity for any physical model, the acoustic parameters of Arctic sea-ice, historical evolution and experimental results, along with its assessment techniques are also presented, and a set of sound velocity parameters of Arctic sea-ice are provided for modeling. The roughness of the ice-water interface is discussed case-by-case depending on its spatial scale in comparison with acoustic wavelength for its influence on the elastic waveguide. The perspectives and potential applications of the sea-ice acoustic waveguide within the frame of promoting sustainable development of the polar region are also discussed.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference104 articles.

1. Li Q H, Wang N, Zhao J P, Huang H N, Yin L, Huang Y, Li Y, Xue S H, Ren X M, Li T 2014 Appl. Acoust. 33 471
李启虎, 王宁, 赵进平, 黄海宁, 尹力, 黄勇, 李宇, 薛山花, 任新敏, 李涛 2014 应用声学 33 471

2. Climate Change Indicators: Arctic Sea Icehttps://www.epa.gov/climate-indicators/climate-change-indicators-arctic-sea-ice [2021-1-1]

3. Li P J. 1996 J. Glaciol. Geocryol. 18 72
李培基 1996 冰川冻土 18 72

4. Grenfell T C, Maykut G A. 1977 J. Glaciol. 18 445

5. Nakamura N, Oort A H 1988 J. Geophys. Res-Atmos. 93 9510

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3