Inversion of deep water geoacoustic parameters based on the seabed reflection characteristics of large grazing angles

Author:

Li Zhang-Long,Hu Chang-Qing,Zhao Mei,Qin Ji-Xing,Li Zheng-Lin,Yang Xue-Feng, , ,

Abstract

The acquisition of geoacoustic parameters is of great significance in studying ocean acoustics. On the basis of deducing the seabed reflection coefficient under the layered absorbing medium, the influence of the absorption coefficient on the seabed reflection coefficient under the condition of large grazing angles is analyzed. The seabed reflection coefficient oscillates at a frequency. When it is equal to the reflection coefficient of the contact interface between seawater and sediment, the corresponding frequency point is defined as the 1/4 oscillation period frequency. At this frequency, the coupling degree between absorption coefficient of sedimentary layer and substrate geoacoustic parameters is less than those at other frequencies. In this paper, a stepwise optimization inversion method for deep water geoacoustic parameters is proposed based on the seabed reflection characteristics of large grazing angles. Firstly, the interference period of the seabed reflection coefficient is extracted by the correlation method, and the sound speed and thickness of the deposited layer are inverted by the interference period. The density is obtained from the inversion result of sound speed combined with Hamilton empirical formula. Secondly, the value of the absorption coefficient of the sedimentary layer is calculated by combining the search boundary of the substrate sound speed. The one-dimensional inversion of the substrate sound speed is realized by using the substrate reflection coefficient at 1/4 oscillation period frequency. Finally, the one-dimensional inversion of the absorption coefficient of the sedimentary layer is realized by using the seabed reflection coefficient at a half-wave layer frequency. The seabed reflection characteristics of large glancing angles are combined with stepwise inversion to reduce the coupling degree of the substrate sound speed and the absorption coefficient of the sedimentary layer. Experimental results show that the geoacoustic parameters retrieved by this method can be effectively applied to the prediction of propagation loss in a certain range under the condition of large grazing angle measurement.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3