Author:
Bai Wen-Jie,Yan Dong,Han Hai-Yan,Hua Shuo,Gu Kai-Hui, , , ,
Abstract
Owing to the long lifetime of Rydberg atom, easy to operate and easy to control the interaction between Rydberg atoms, Rydberg atom has attracted considerable attention in quantum information and quantum optics fields. Specially, the anti-blockade effect, as a physical resource, can be used to implement various tasks in quantum information processing. Based on the rigid dipole blockade, an ensemble of two-level Rydberg atoms trapped in three magneto-optical traps can be regarded as a superatom. Based on the superatom model, the in-phase and anti-phase dynamics of the three-body Rydberg superatoms are studied by adjusting the numbers of atoms, and the W state and two kinds of maximal entangled states are generated simultaneously. Our work has great potential applications in coherent manipulation and quantum information processing.The numerical simulations are performed based on the superatom model and thereby the formidable obstacle that the Hilbert space dimension grows exponentially with the particle number increasing can be completely removed. As a result, the quantum control and quantum entanglement can be achieved from the single-quanta level to the mesoscopic level.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献