Angle-resolved photoemission spectroscopy of electronic structure of 1<i>T</i>-NbSeTe

Author:

Wei Zhi-Yuan,Hu Yong,Zeng Ling-Yong,Li Ze-Yu,Qiao Zhen-Hua,Luo Hui-Xia,He Jun-Feng, , ,

Abstract

Transition metal dichalcogenides (TMDs) have attracted a lot of interest in condensed matter physics research due to the existence of multiple novel physical phenomena, including superconductivity and charge density wave order, and also TMDs provide a unique window for studying the interactions between different ground states. In this work, the electronic structure of 1<i>T</i>-NbSeTe is systematically examined by angle-resolved photoemission spectroscopy (ARPES) for the first time. A van Hove singularity (VHS) is identified at the <i>M</i> point, with binding energy of 250 meV below the Fermi level. Careful analysis is carried out to examine the band dispersions along different high symmetry directions and the possible many-body effect. However, the dispersion kink—a characteristic feature of electron-boson coupling is not obvious in this system. In TMD materials, the van Hove singularity near the Fermi level and the electron-boson (phonon) coupling are suggested to play an important role in forming charge density wave (CDW) and superconductivity, respectively. In this sense, our experimental results may provide a direct explanation for the weakened CDW and relatively low superconducting transition temperature in 1<i>T</i>-NbSeTe. These results may also provide an insight into the charge-density-wave orders in the relevant material systems.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3