Comparative study on epitaxial growth of stanene and bismuthene on InSb(111) substrate

Author:

Zheng Xiao-Hu,Zhang Jian-Feng,Du Rui-Rui, ,

Abstract

Two-dimensional topological insulator (2DTI) with a large bandgap is prerequisite for potentially observing quantum spin Hall and other quantum phenomena at room-temperature. At present, the synthesis of such materials possesses formidable challenge. In this work, we report our experimental results on synthesis of large-gap 2DTI stanene and bismuthene on B-faced InSb(111) substrate by using molecular beam epitaxy technology. We find that both the stanene and bismuthene can be synthesized by following the forming of a wetting layer on InSb(111) substrate, but with different prospects. On the one hand, it is found that the binding energy between Sn and the substrate is not strong enough to compete the binding force between Sn atoms during the post annealing, thus resulting in a wetting layer composed of many small domains. It significantly restricts the quality of the stanene epilayers. On the other hand, the Bi atoms on InSb(111) are found more stable than the Sn atoms on InSb(111), resulting in a uniform wetting layer which can be optimized by adjusting substrate temperature and post-annealing conditions. Large size and single crystal bismuthene domains have been observed under the STM measurement, which also indicates a bulk gap of ~0.15 eV and metallic edge states.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3