Accelerating super-resolution ultrasound localization microscopy using generative adversarial net

Author:

Sui Yi-Hui,Guo Xing-Yi,Yu Jun-Jin,Alexander A. Solovev,Ta De-An,Xu Kai-Liang, , ,

Abstract

<sec>Ultrafast ultrasound localization microscopy (uULM) has broken through the fundamental acoustic diffraction limit by accumulating thousands of sub-wavelength microbubble localisation points and improved the spatial resolution by more than one order of magnitude, which is conducive to clinical diagnosis. By localizing individually injected microbubbles and tracking their movement with a subwavelength resolution, the vasculature microscopy can be achieved with micrometer scale. However, the reconstruction of a uULM image often requires tens or even hundreds of seconds of continuous long-range image acquisition, which limits its clinical application. In order to solve this problem, a generative adversarial network (GAN) based deep learning method is proposed to reconstruct the super-resolution ultrasound localization microscopy. <i>In vivo</i> uULM ultrasound datasets are used to train the network to reconstruct dense vascular networks via localized microbubbles. This approach is validated by using another <i>in-vivo</i> dataset obtained in a rat brain. Results show that GAN based ultrafast ultrasound localization microscopy (GAN-uULM) can resolve micro vessels smaller than 10 μm. Besides, GAN-uULM is able to distinguish small vessels that cannot be continuously reconstructed by using a standard uULM reconstruction method. Saturation parameter based on counting the number of explored pixels is used to evaluate the reconstruction quality. The proposed reconstruction approach reduces the data requirement by half and thus significantly accelerates the uULM imaging. It is illustrasted that for a dataset of 292 s ultrafast acquisition, the saturation of standard uULM image is 33%, while that of GAN-uULM can reach 46%. Fourier ring correlation (FRC) method is utilized to measure the spatial resolution in uULM. Resolutions of the images obtained by standard uULM and GAN-ULM are 7.8 μm and 8.9 μm, respectively.</sec><sec>In conclusion, the developed deep learning model is able to connect trajectories with less computational complexity and avoids manual tuning and trajectory screening, providing an effective solution for accelerating ultrasound localization microscopy.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference43 articles.

1. Zhong C Y, Zheng Y Y 2021 Chin. J. Med. Imaging Technol. 37 1799
钟传钰, 郑元义 2021 中国医学影像技术 37 1799

2. Wang Y S, Tao H G 1991 Chin. J. Endocrinol. Metab. 7 2
王宇森, 陶鸿根 1991 中华内分泌代谢杂志 7 2

3. Chugh B P, Lerch J P, Yu L X, Pienkowski M, Harrison R V, Henkelman R M, Sled J G 2009 Neuroimage 47 1312

4. Huang C H, Chen C C V, Siow T Y, Hsu S H S, Hsu Y H, Jaw F S, Chang C 2013 PLoS One 8 e78186

5. Hong G, Lee J C, Robinson J T, Raaz U, Xie L M, Huang, N F, Cooke J P, Dai H J 2012 Nat. Med. 18 1841

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3