Investigation of stability and migration mechanism of defects in ZnGeP<sub>2</sub> crystals by density functional theory

Author:

Ma Tian-Hui,Lei Zuo-Tao,Zhang Xiao-Meng,Fu Qiu-Yue,Bu Hebateer,Zhu Chong-Qiang,Yang Chun-Hui, ,

Abstract

ZnGeP<sub>2</sub> crystals are the frequency conversion materials with the excellent comprehensive performances in a range of 3–5 μm. However, the overlap of the absorption band and the pump wavelength range of optical parametric oscillator at 8–12 μm limits the application performance of the optical parametric oscillator and makes it impossible to achieve a far-infrared laser output. In this work, the formation energy and migration mechanism of six kinds of defects of ZnGeP<sub>2</sub> crystal are discussed by density functional theory. The results show that two defective structures of <inline-formula><tex-math id="M10">\begin{document}$\rm{V_P}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220610_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220610_M10.png"/></alternatives></inline-formula>and <inline-formula><tex-math id="M11">\begin{document}$\rm{V_{Ge}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220610_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220610_M11.png"/></alternatives></inline-formula> are difficult to form, while four defective structures of <inline-formula><tex-math id="M12">\begin{document}$\rm V_{\rm Zn}^ -$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220610_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220610_M12.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M13">\begin{document}$\rm{Z{n_{Ge}}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220610_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220610_M13.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M14">\begin{document}$ {\rm Ge}_{\rm Zn}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220610_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220610_M14.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M15">\begin{document}$\rm{ G{e_{\rm Zn}} + {V_{\rm Zn}}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220610_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220610_M15.png"/></alternatives></inline-formula> are easy to create. When the number of Ge atoms are slightly more than that of Zn atoms in ZnGeP<sub>2</sub> crystals, the vacancy defects <inline-formula><tex-math id="M16">\begin{document}$\rm V_{\rm Zn}^ -$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220610_M16.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220610_M16.png"/></alternatives></inline-formula> form more easily than antistructure defects <inline-formula><tex-math id="M17">\begin{document}$ {\rm Ge}_{\rm Zn}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220610_M17.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220610_M17.png"/></alternatives></inline-formula> at 10 K, 500 K and 600 K, but the antistructure defects <inline-formula><tex-math id="M18">\begin{document}$ {\rm Ge}_{\rm Zn}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220610_M18.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220610_M18.png"/></alternatives></inline-formula> are easier to form than the vacancy defects <inline-formula><tex-math id="M19">\begin{document}$ {\text{V}}_{\text{Zn}}^{-} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220610_M19.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220610_M19.png"/></alternatives></inline-formula> at 273 K and 400 K. There is a negative correlation between the volume expansion rate and the defect formation energy of ZnGeP<sub>2</sub> crystal. The larger the volume expansion rate, the lower the defect formation energy is. The differential charge density shows that the electron cloud density among the atoms is enhanced in the defective structures of Ge<sub>Zn</sub> and V<sub>Zn</sub>+Ge<sub>Zn</sub>. The electron cloud density at the lattices of vacancy defects is enhanced when the vacancy defects (V<sub>Zn</sub> and V<sub>Ge</sub>) and antistructure defects (Ge<sub>Zn</sub> and Zn<sub>Ge</sub>) form the joint defects. Comparing with the defect-free cells, the charge of Zn atoms increases significantly, that of Ge is significantly reduced, and that of P does not change in the antistructure defect Zn<sub>Ge</sub> or Ge<sub>Zn</sub>. The absorption spectra of ZnGeP<sub>2</sub> crystal at 10K show that there is the significant absorption in a wavelength range from 0.6 μm to 2.5 μm for the four defective structures: V<sub>Ge</sub>, V<sub>Zn</sub>, Zn<sub>Ge</sub> and Ge<sub>Zn</sub>, while the absorption in this range is small for the defective structures V<sub>P</sub> and Ge<sub>Zn</sub>+V<sub>Zn</sub>. The V<sub>Zn</sub> has the lowest migration energy, while V<sub>Ge</sub> has the highest. The difficulty for V<sub>P</sub> to migrate depends on the space resistance, while the difficulty for V<sub>Ge</sub> and V<sub>Zn</sub> to migrate depend on the inter-atomic distance. This may be related to the small radius and high proportion of P atoms and the large radius and low proportion of Ge and Zn atom in ZnGeP<sub>2</sub> crystal.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3