Interface performance of Bi<sub>2</sub>Te<sub>3</sub>-based micro thermoelectric devices optimized synergistically by surface modification engineering

Author:

Tang Hao,Bai Hui,Lü Jia-Nan,Hua Si-Heng,Yan Yong-Gao,Yang Dong-Wang,Wu Jin-Song,Su Xian-Li,Tang Xin-Feng, ,

Abstract

The miniaturization of thermoelectric devices raises a strong requirement for the excellent interfacial properties of thermoelectric elements. Thus, achieving a heterogeneous interface with low interfacial contact resistivity and high interfacial bonding strength is a prerequisite for the successful fabrication of high-performance and high-reliability Bi<sub>2</sub>Te<sub>3</sub>-based micro thermoelectric devices. In this work, we adopt the acid pickling method to modify the surface structure of Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub> material to synergistically optimize the interfacial properties of Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub>/Ni thermoelectric elements. The acid pickling process effectively modulates the work function of Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub> material, which dramatically reduces the contact barrier height of Ni/Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub> heterojunction from 0.22 to 0.02 eV. As a consequence, the corresponding interfacial contact resistivity of the element is greatly reduced from 14.2 to 0.22 μΩ·cm<sup>2</sup>. Moreover, the acid pickling process effectively adjusts the surface roughness of the matrix, forming a V-shaped pit of 2–5 μm in depth on the substrate surface and leading to a pinning effect. This significantly enhances the physical bonding between the material surface and the Ni layer, which, together with the metallurgical bond formed by the interfacial diffusion reaction zone of about 50-nm-thick Ni/Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub>, greatly enhances the interfacial bond strength from 7.14 to 22.34 MPa. The excellent interfacial properties are further validated by the micro-thermoelectric devices. The maximum cooling temperature difference of 4.7 mm× 4.9 mm micro thermoelectric device fabricated by this process achieves 56.5 K, with hot side temperature setting at 300 K, and the maximum output power reaches 882 μW under the temperature gradient of 10 K. This work provides a new strategy for realizing the synergetic optimization of interfacial properties and opens up a new avenue for improving the performance of micro thermoelectric devices.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference32 articles.

1. Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

2. Tao Y, Qi N, W B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201
陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 物理学报 67 197201

3. Mao J, Chen G, Ren Z 2020 Nat. Mater. 20 454

4. Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102
范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 物理学报 70 137102

5. Yang D W, Luo T T, Su X L, Wu J S, Tang X F 2021 J. Inorg. Mater. 36 991
杨东旺, 罗婷婷, 苏贤礼, 吴劲松, 唐新峰 2021 无机材料学报 36 991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3