Solvent effect on ultrafast decay of uracil studied by femtosecond transient absorption spectroscopy

Author:

Shen Huan,Hua Lin-Qiang,Wei Zheng-Rong, , ,

Abstract

As one of the building blocks in RNA chain, uracil and its derivatives have attracted a great deal of interest since its ultrafast dynamics is closely related to mutagenic and carcinogenic effects. In this study, the solvent effect on the ultrafast decay of excited uracil is studied by femtosecond transient absorption spectroscopy in the UV region. The uracil molecule is populated to the <sup>1</sup>(π, π*) state (i.e. S<sub>2</sub> state) with a pump pulse at 264 nm. Broad-band white light continuum in the UV region from 280 to 360 nm is used as the probe. With a detail analysis of the measured transient spectra, two decay time constants, i.e. 9.8 ps and > 1000 ps, are directly obtained at 300 nm in the solvent of acetonitrile. Compared with our previous experiments, where no obvious triplet population is observed in water, triplet population is found to play an important role in acetonitrile. A comparison of excited-state dynamics among different solvents is also carried out. It reveals that the decay from the <sup>1</sup>(n, π*) state (i.e., S<sub>1</sub> state) to the T<sub>1</sub> state shows a clear dependence on the H bonding of the solvents. With stronger H bonding, the <sup>1</sup>(n, π*) excited state decays faster and has less chance to transfer to the triplet state. These results suggest that only when the <sup>1</sup>(n, π*) state has excess vibrational energy can it transit to the triplet state through the intersystem crossing process. With this new information obtained in the present measurement, the decay dynamics of uracil on the S<sub>2</sub> excited state can be further understood.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3