Phase diagram prediction and high pressure melting characteristics of GaN

Author:

Lei Zhen-Shuai,Sun Xiao-Wei,Liu Zi-Jiang,Song Ting,Tian Jun-Hong,

Abstract

The III-V compound semiconductor, GaN, has become an excellent semiconductor material for developing the high-frequency and high-power electronic devices because of its excellent characteristics, including large band width, high thermal conductivity and fast electron saturation rate, and has received extensive attention in recent years. However, the decomposition temperature of GaN is lower than the melting temperature, some of its fundamental properties, such as melting temperature and high temperature phase transition pressure, are still unclear, and so, now the investigation of fundamental properties dominates the whole process of this material from development to mature applications. In the present work, the classical molecular dynamics simulations combined with the first-principles calculations and lattice dynamics methods are adopted to predict the phase diagrams of GaN with wurtzite and rocksalt structures in a pressure range of 0–80 GPa. The phase transition pressures, 44.3 GPa and 45.9 GPa, obtained from the first-principles calculations and molecular dynamics simulations from wurtzite to rocksalt structure in GaN at zero temperature, are in agreement with the available experimental results (Sadovyi B, et al. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://doi.org/10.1103/PhysRevB.102.235109">2020 <i>Phys. Rev. B</i> <b>102</b> 235109</ext-link>). The melting temperature at 0 GPa is 2295 K obtained by extrapolating the GaN melting curve of the wurtzite structure. With the pressure increasing to 33.3 GPa, the melting curve of wurtzite structure in GaN intersects with the melting curve of rocksalt structure, and the melting temperatures of both structures increase with pressure increasing. It is found that GaN may have a superionic phase and the superionic phase transition occurs in the wurtzite structure at pressures greater than 2.0 GPa and temperatures above 2550 K, whereas the rocksalt structure undergoes a superionic phase transition at pressures and temperatures higher than 33.1 GPa and 4182 K, respectively, and both of the phase transition temperatures increase with pressure increasing. The slope of the phase boundary line of GaN is positive at high temperatures and gradually changes into a curve with a negative slope as the temperature decreases.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3