Photon echo probability distribution characteristics and range walk error of small translational target for photon ranging

Author:

Hou A-Hui,Hu Yi-Hua,Fang Jia-Jie,Zhao Nan-Xiang,Xu Shi-Long, ,

Abstract

<sec>The photon counting Lidar enhances the signal-to-noise ratio of the echo signal and reduces the number of photons required for signal analysis, thereby improving the detection range and measurement accuracy. At present, the photon counting Lidar is mainly used to detect stationary targets, and the mechanism of the influence of long-distance target motion characteristics on the photon echo probability distribution is still unclear. Therefore, it is urgent to study the photon ranging performance of long-distance moving targets.</sec><sec>In this paper, the probability distribution model of photon detection echo of moving targets is established, and a Monte Carlo model for photon detection of arbitrary targets is given. Through experimental comparison, the correctness of the Monte Carlo simulation model is verified. Furthermore, the probability distribution characteristics of the laser echo and photon echo of a small rectangular target in translation within a detection period are compared. And the variation law of the probability distribution of photon detection under different translational speeds is analyzed. In addition, the relationship between the photon ranging error and the translational speed of the target is discussed.</sec><sec>The results show that the photon echo probability distribution of the translational target is more forward and the width is narrower than the laser pulse echo probability distribution. Compared with the extended target, the detection probability of the translational small target is significantly reduced, and the maximum average echo photon number is <inline-formula><tex-math id="M6">\begin{document}$ 1/10 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20211998_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20211998_M6.png"/></alternatives></inline-formula> times that of the extended target, as a result, the photon detection of the translational target requires higher laser pulse energy. When the length of target is 1m, the range walk error reaches a maximum value at a speed of <inline-formula><tex-math id="M7">\begin{document}$25\;{\text{m/s}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20211998_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20211998_M7.png"/></alternatives></inline-formula>, i.e. <inline-formula><tex-math id="M8">\begin{document}$6.72\;{\text{ cm}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20211998_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20211998_M8.png"/></alternatives></inline-formula>, which is <inline-formula><tex-math id="M9">\begin{document}$ 1/2 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20211998_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20211998_M9.png"/></alternatives></inline-formula> times that of the extended target. With the increase of the translational speed, the range walk error first increases and then turns stable with the light spot acting as the boundary.</sec><sec>The method proposed in this paper can be further extended to photon detection and ranging of targets with other shapes, materials and attitudes. The research results provide a theoretical basis for the correction and performance improvement of the photon ranging of moving target. Furthermore, it lays the foundation for the detection of moving targets and accurate acquisition of information by photon counting Lidar.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference21 articles.

1. Liu B, Yu Y, Jiang S 2019 Opto-Electron. Eng. 46 190167
刘博, 于洋, 姜朔 2019 光电工程 46 190167

2. Wulder M A, White J C, Nelson R F, Næsset E, Ørka H O, Coops N C, Hilker T, Bater C W, Gobakken T 2012 Remote Sens. Environ. 121 196

3. Johnson S, Gatt P, Nichols T 2003 Proc. SPIE Int. Soc. Opt. Eng. 5086 359

4. Hou L B, Huang G H, Kuang Y W, Chen K, Shu R 2013 Sci. Tech. Eng. 13 5186
侯利冰, 黄庚华, 况耀武, 陈凯, 舒嵘 2013 科学技术与工程 13 5186

5. Luo Y, He Y, Geng L M, Wang M J, Lei L J, Wu Y F, Hu S J, Hou X, Chen W B 2016 Chin. J. Lasers 43 0514001
罗远, 贺岩, 耿立明, 王明建, 雷琳君, 吴姚芳, 胡善江, 侯霞, 陈卫标 2016 中国激光 43 0514001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3