Method of diagnosing broadband microwave reflection of plasma sheath

Author:

Yang Min,Wang Jia-Ming,Qi Kai-Xuan,Li Xiao-Ping,Xie Kai,Zhang Qiong-Jie,Liu Hao-Yan,Dong Peng,

Abstract

<sec>During the re-entry process of the aircraft, a layer of plasma sheath wrapping its surface will be generated, which will lead the communication quality to deteriorate and even interrupt, resulting in the phenomenon of “radio blackout”. The “radio blackout” problem has plagued the aerospace industry for many years. One of the very important reasons is the lack of awareness of the communication transmission environment caused by the limitations of plasma sheath measurements. Therefore, the realization of in-situ measurement of sheath parameters is the key to the research of the “radio blackout” problem of hypersonic vehicles.</sec><sec>In this work, a broadband microwave reflection method is presented and developed for diagnosing the reentry plasma sheath .The relationship between broadband microwave reflection data and plasma parameters is derived theoretically, and effective diagnostic frequency points are selected. Then, the plasma parameters are obtained by inversely using the reflection data of the selected effective frequency points to realize the simultaneous diagnosis and measurement of electron density and collision frequency.</sec><sec>This method makes up for the deficiency that the traditional reflectometer cannot diagnose high collision frequency plasma, and it can diagnose the parameter of the plasma sheath of the hypersonic vehicle in a complex environment.</sec><sec>A simulation model and an experimental platform are established, and the simulation analysis and ground experiment are carried out to verify the method. The electron density of the plasma is diagnosed by transmission diagnostics to provide a control for reflection experiments. The experimental results show that the difference between the two diagnostic results is small, which verifies the effectiveness of the method.</sec><sec>The method can realize the real-time diagnosis of plasma sheaths of re-entry vehicles or hypersonic vehicles under various flight conditions, and accumulate a large number of first-hand measurement data, which is of great scientific value in recognizing the characteristics of plasma sheaths comprehensively, objectively and accurately. It can also be used for the parameter input link of the adaptive measurement and control system environment. In addition, this method can also be used for real-time measurement of environment parameters of ground plasma jet and real-time monitoring of changes of plasma jet parameters without changing the jet shape.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference24 articles.

1. Hartunian R, Stewart G, Curtiss T, Fergason S, Seibold R 2007 AIAA Atmospheric Flight Mechanics Conference and Exhibit Hilton Head, South Carolina, USA, August 20–23, 2007, AIAA 2007–6633

2. Rybak J, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. AES-7(5) 879

3. Xie K, Yang M, Bai B W, Li X P, Zhou H, Guo L X 2016 J. Appl. Phys. 119 023301

4. Yang M 2014 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)
杨敏 2014 博士学位论文 (西安: 西安电子科技大学)

5. Akey N D, Schroeder L C 1973 J. Spacecr. Rockets 10 170

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3