Optimization of interfacial characteristics of antimony sulfide selenide solar cells with double electron transport layer structure
-
Published:2022
Issue:3
Volume:71
Page:038802
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Cao Yu,Liu Chao-Ying,Zhao Yao,Na Yan-Ling,Jiang Chong-Xu,Wang Chang-Gang,Zhou Jing,Yu Hao, , , , ,
Abstract
Antimony sulfide selenide thin film solar cells have drawn great interest in the field of photovoltaic due to their advantages of simple preparation method, abundant raw materials, non-toxic and stable photoelectric properties. After the development in recent years, the photoelectric conversion efficiency of antimony sulfide selenide solar cells has exceeded 10%, which has great development potential. In this work, the carrier recombination near n/i interface in antimony sulfide selenide solar cells is studied. It is found that the characteristics of the n/i interface are affected by the interfacial electron mobility and energy band structure. The improvement of the interface electron mobility can make the electrons more effectively transferred to the electron transport layer, and realize the effective improvement of the short circuit current density and fill factor of the device. Moreover, the introduction of ZnO/Zn<sub>1–<i>x</i></sub>Mg<sub><i>x</i></sub>O double electron transport layer structure can further optimize the performance of antimony sulfide selenide solar cells. The change of Zn<sub>1–<i>x</i></sub>Mg<sub><i>x</i></sub>O energy level position can adjust the energy level distribution of the interface and light absorption layer simultaneously. When the conduction band energy level of Zn<sub>1–<i>x</i></sub>Mg<sub><i>x</i></sub>O is –4.2 eV and the corresponding Mg content is 20%, the effect of restraining the carrier recombination is the most obvious, and the antimony sulfide selenide solar cell also obtains the best device performance. Finally, under the ideal condition of removing the defect state, the antimony sulfide selenide solar cells with 600 nm in thickness can achieve 20.77% theoretical photoelectric conversion efficiency. The research results provide theoretical and technical support for further optimizing and developing the antimony sulfide selenide solar cells.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference37 articles.
1. Righetto M, Lim S S, Giovanni D, Lim J W M, Zhang Q, Ramesh S, Tay Y K E, Sum T C 2020 Nat. Commun. 11 1 2. Metzger W K, Grover S, Lu D, Colegrove E, Moseley J, Perkins C L, Li X, Mallick R, Zhang W, Malik R, Kephart J, Jiang C S, Kuciauskas D, Albin D S, Al-Jassim M M, Xiong G, Gloeckler M 2019 Nat. Energy. 4 837 3. Cao Y, Jiang J H, Liu C Y, Ling T, Meng D, Zhou J, Liu H, Wang J Y 2021 Acta Phys. Sin. 70 128802 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧 2021 物理学报 70 128802 4. Birant G, Wild J De, Kohl T, Buldu D G, Brammertz G, Meuris M, Poortmans J, Vermang B 2020 Sol. Energy 207 1002 5. Chen Y, Song K, Xu X L, Yao G, Wu Z Y 2020 Sol. Energy 195 121
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|