A high-efficiency wideband tunable polarization conversion metasurface assisted by the localized surface plasmon resonances

Author:

Zhang Jian-Guo ,Yi Zao ,Kang Yong-Qiang ,Ren Hao ,Wang Wen-Yan ,Zhou Jing-Fan ,Hao Hui-Zhen ,Chang Hui-Dong ,Gao Ying-Hao ,Chen Ya-Hui ,Li Yan-Na , , , , , , ,

Abstract

Combined with the Dirac semimetals (DSMs), which is a new type of material and also called as 3D graphene, a tunable wideband terahertz polarization conversion metasurface based on an anisotropic configuration is studied, in which the DSMs wire array is beneficial to the regulation of Fermi energy. The results show that the metasurface can realize wideband and highly efficient polarization conversion, and has the property of half wave plate at the resonant modes. This characteristics are derived from the excitation of Localized Surface Plasmon Resonances (LSPRs) and the anisotropy of structure itself. When the incident angle changes in the range of 0°~40°, the high efficiency of wideband polarization conversion can be maintained. When it is greater than 40°, the wideband polarization conversion gradually changes to the dual-band or the multi-band conversion. Furthermore, it is found that in the process of increasing the Fermi energy of AlCuFe from 65 meV to 140 meV, the polarization conversion ratio can be maintained at a high level, and the conversion performance changes from single-band conversion to wideband conversion, and then to wideband conversion with wider band and single-band conversion with narrower band. At the same time, by discussing the metasurface combined with the different DSMs, it is concluded that the better the metallic property of DSMs is, the better the wideband polarization conversion performance of the corresponding metasurface is. At last, the numerical results are verified by the Multiple Interference Theory (MIT) based on the Fabry-Pérot-like resonance cavity.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3