Research progress of integrated photonic quantum simulation

Author:

Chen Yang,Zhang Tian-Yang,Guo Guang-Can,Ren Xi-Feng,

Abstract

Quantum simulation is to use a controllable quantum system to simulate other complicated or hard-to-control quantum system, and to deal with some complex unknown quantum systems that cannot be simulated on classical computers due to the exponential explosion of the Hilbert space. Among different kinds of physical realizations of quantum simulation, integrated optical systems have emerged as an appropriate platform in recent years due to the advantages of flexible control, weak decoherence, and no interaction in optical systems. In this review, we attempt to introduce some of the basic models used for quantum simulation in integrated photonic systems. This review article is organized as follows. In Section 2, we introduce the commonly used material platforms for integrated quantum simulation, including the silicon-based, lithium niobate-based integrated circuits, and the femtosecond laser direct writing optical waveguides. Several integrated optical platforms such as the coupled waveguide arrays, photonic crystals, coupled resonator arrays, and multiport interferometers are also introduced. In Section 3, we focus on the analog quantum simulations in the integrated photonic platform, including Anderson localization of light in disordered systems, various kinds of topological insulators, nonlinear and non-Hermitian systems. More specifically, in Subsection 3.1, we present the integrated photonic realizations of disordered and quasi-periodic systems. In Subsection 3.2, we review the integrated photonic realizations of the topological insulators with and without time-reversal symmetry, including Floquet topological insulators, quantum spin hall system, anomalous quantum hall system, valley hall system, Su-Schrieffer-Heeger (SSH) model, and photonic topological Anderson insulators. Besides, topological insulator lasers and topologically protected quantum photon sources are briefly reviewed. In Subsection 3.3, we review the nonlinear and non-Hermitian integrated optical systems. In Section 4 we present the integrated digital quantum simulations based on the multiport interferometers, including the discrete-time quantum random walk, Boson sampling, and molecular simulation. In Section 5, we summarize the content of the article and present the outlook on the future perspectives of the integrated photonic quantum simulation. We believe that the integrated photonic platforms will continue to provide an excellent platform for quantum simulation. More practical applications will be found based on this system through combining the fields of topological photonics, laser technologies, quantum information, nonlinear and non-Hermitian physics.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3