Neuronal growth and development promoted by low-intensity roadband terahertz radiation

Author:

Ma Shao-Qing,Gong Shi-Xiang,Zhang Wei,Lu Cheng-Biao,Li Xiao-Li,Li Ying-Wei, , , ,

Abstract

Terahertz waves are located in the energy level range of hydrogen bonding and van der Waals forces, and can directly couple with proteins to excite the nonlinear resonance effect of proteins. Therefore, terahertz wave can affect the conformation of proteins, the structure and function of neurons. Primary cerebral cortex neurons of SD rats are cultured in vitro. Neurons are radiated 3 days by THz wave with 0.3–3.0 THz in frequency and 100 μW in power; the growth and development indicators of neurons (Cell body area, total length of process) are recorded. At the end of a radiation programme, Western blotting is used to detect the protein expressions of GluA1, GluN1, postsynaptic density protein-95 (PSD-95) and synaptophysin 38 (SYP-38). After the first day of terahertz wave radiation, the cell area is increased by 144.9% (<i>P </i>< 0.05); on the second day and third day of terahertz wave radiation, the growth value of the total length of neuronal neurites are increased by 65.1% (<i>P </i>< 0.05) and 109.4% (<i>P </i>< 0.05), respectively. After the three-day terahertz wave irradiation, the protein expressions of GluA1 and SY-38 are increased by 38.1% (<i>P </i>< 0.05) and 19.2% (<i>P </i>< 0.05), respectively. In addition,some results show below. 1) The use of low-intensity broadband terahertz wave in this study will not cause the cortical neurons to die, and will not affect their regular growth. 2) Low-intensity broadband terahertz radiation can promote the growth of cortical neuron cell bodies and processes, but the effects on cortical neuron cell bodies and processes are different. This may be related to the developmental cycle of cultured cortical neurons in vitro, and there is a cumulative effect on the promotion of neuronal processes by low-intensity broadband terahertz. 3) The promotion of neuronal growth and development by low-intensity broadband terahertz wave radiation may be related to the proportion of AMPA receptor subtypes and the expression of presynaptic specific protein SY-38. These results herald a specific-frequency and specific-energy terahertz radiation can be developed into a novel neuromodulation technology for the treatment or intervention of diseases such as neurodevelopmental disorders.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference41 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3