Molecular dynamics study of effects of point defects on thermal conductivity in cubic silicon carbide

Author:

Wang Fu,Zhou Yi,Gao Shi-Xin,Duan Zhen-Gang,Sun Zhi-Peng,Wang Jun,Zou Yu,Fu Bao-Qin, ,

Abstract

Silicon carbide (SiC) has been widely used in nuclear technology due to its excellent properties. In the irradiation environment, the energetic incident particles can cause the atoms in the material to deviate from the position of the crystal lattice, thereby producing the vacancies, interstitial atoms, anti-site atoms and other point defects. These defects will change the thermal properties of the material and degrade the service performance of the material. Therefore, in this work the equilibrium molecular dynamics method (Green-Kubo method) is used to study the effect of point defects on the heat transfer properties of cubic SiC (<i>β</i>-SiC or 3<i>C</i>-SiC) with the help of the Tersoff-type potential. The point defects considered include Si interstitial atoms (Si<sub>I</sub>), Si vacancies (Si<sub>V</sub>), Si anti-site atoms (Si<sub>C</sub>), C interstitial atoms (C<sub>I</sub>), C vacancies (C<sub>V</sub>) and C anti-site atoms (C<sub>Si</sub>). It is found that the thermal conductivity (<i>λ</i>) decreases with the increase of the point defect concentration (<i>c</i>). The excessive thermal resistance (Δ<i>R</i> = <i>R</i><sub>defect </sub>– <i>R</i><sub>perfect</sub>, <i>R</i> = 1/<i>λ</i>, <i>R</i><sub>defect</sub> is the thermal resistance of the defective material, and <i>R</i><sub>perfect</sub> is the thermal resistivity of the material without defects) has a linear relation with the concentration of point defects in the considered range (0.2%–1.6%), and its slope is the thermal resistivity coefficient. It can be found that the thermal resistivity coefficient of vacancy and interstitial atoms are higher than that of anti-site atoms; the thermal resistivity coefficient of point defects at high temperature is higher than at low temperature; the thermal resistivity coefficient of Si vacancies and Si interstitial atoms are higher than that of C vacancies and C interstitial atoms. These results are helpful in predicting the thermal conductivity of silicon carbide under irradiation and controlling the thermal conductivity of silicon carbide.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference34 articles.

1. Kawamura T, Hori D, Kangawa Y, Kakimoto K, Yoshimura M, Mori Y 2008 Jpn. J. Appl. Phys. 47 8898

2. Čížek J, Kalivodová J, Janeček M, Stráský J, Srba O, Macková A 2021 Metals 11 76

3. Katoh Y, Snead L L 2019 J. Nucl. Mater. 526 151849

4. Pei H, Yao W Z, Lü J M, Zhang X D 2018 J. Mater. Eng. 46 19
何培, 姚伟志, 吕建明, 张向东 2018 材料工程 46 19

5. Gai Z G, Luo C T, Chen T, Zhang P 2010 Vac. Cryog. 16 1
盖志刚, 罗崇泰, 陈焘, 张平 2010 真空与低温 16 1

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3