Exciton lifetime of quantum dots under hydrostatic pressure tuned scattering field Ag nanoparticles

Author:

Huang Jun-Hui,Li Yuan-He,Wang Jian,Li Shu-Lun,Ni Hai-Qiao,Niu Zhi-Chuan,Dou Xiu-Ming,Sun Bao-Quan, ,

Abstract

In the past few decades, the studies of exciton emissions coupled with the metal nanoparticles have mainly focused on the enhancing exciton radiation and reducing exciton lifetime by near-field coupling interactions between excitons and metal nanoparticles. Only in recent years has the plasmon-field-induced to extend exciton lifetime (inhibition of the exciton emission) been reported. Experimentally, for observing a long-lifetime exciton state it needs to satisfy a condition of <inline-formula><tex-math id="M8">\begin{document}$kz\sim1$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M8.png"/></alternatives></inline-formula>, instead of near-field condition of <inline-formula><tex-math id="M9">\begin{document}$ kz\ll 1 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M9.png"/></alternatives></inline-formula>, where <inline-formula><tex-math id="M10">\begin{document}$k=2{\pi }n/\lambda$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M10.png"/></alternatives></inline-formula> is the wavevector, <inline-formula><tex-math id="M11">\begin{document}$ n $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M11.png"/></alternatives></inline-formula> is the refractive index, <inline-formula><tex-math id="M12">\begin{document}$ \lambda $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M12.png"/></alternatives></inline-formula> is the wavelength, and <inline-formula><tex-math id="M13">\begin{document}$ z $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M13.png"/></alternatives></inline-formula> is the separation distance between the emitter and metal nanoparticle. Thus, in this paper, we tune the exciton emission wavelength by applying hydrostatic pressure to achieve the condition of <inline-formula><tex-math id="M14">\begin{document}$kz\sim1$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M14.png"/></alternatives></inline-formula> in order to in detail investigate the coupling between excitons and metal nanoparticles. The studied InAs/GaAs quantum dot (QD) sample is grown by molecular beam epitaxy on a (001) semi-insulating GaAs substrate. After the AlAs sacrificial layer is etched with hydrofluoric acid, the QD film sample is transferred onto an Si substrate covered with Ag nanoparticles. Then the sample is placed in the diamond anvil cell device combined with a piezoelectric ceramic. In this case we can measure the photoluminescence and time-resolved photoluminescence spectra of the QD sample under different pressures. It is found that the observed longest exciton lifetime is <inline-formula><tex-math id="M15">\begin{document}$(120\pm 4)\times 10~\rm{n}\rm{s}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M15.png"/></alternatives></inline-formula> at a pressure of <inline-formula><tex-math id="M16">\begin{document}$ 1.38\;\rm{G}\rm{P}\rm{a} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M16.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M16.png"/></alternatives></inline-formula>, corresponding the exciton emission wavelength of <inline-formula><tex-math id="M17">\begin{document}$ 797.49\;\rm{n}\rm{m} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M17.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M17.png"/></alternatives></inline-formula><i>,</i> which is about <inline-formula><tex-math id="M18">\begin{document}$ 1200 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M18.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M18.png"/></alternatives></inline-formula> times longer than the exciton lifetime of <inline-formula><tex-math id="M19">\begin{document}$\sim 1\;\rm{n}\rm{s} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M19.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20221344_M19.png"/></alternatives></inline-formula> in QDs without the influence of Ag nanoparticles. The experimental results can be understood based on the destructive interference between the quantum dot exciton radiation field and the scattering field of metal nanoparticles. This model proposes a convenient way to increase the emission lifetime of dipoles on a large scale, and is expected to be applied to quantum information processing, optoelectronic applications, fundamental physics researches such as Bose-Einstein condensates.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3