Far-field directional emission of fluorescence enhanced by dielectric microsphere and metallic planar nanolayers

Author:

Guo Fu-Zhou,Chen Zhi-Hui,Feng Guang,Wang Xiao-Wei,Fei Hong-Ming,Sun Fei,Yang Yi-Biao, ,

Abstract

Controlling the emission characteristics of fluorescent substances and increasing the intensity of fluorescence emission are crucial for fluorescence detecting technology in single-molecule detection, biomedicine, and sensing applications. Since fluorescence emission is isotropic in nature, the collected fluorescence is only accounted for a small fraction of the total emitted fluorescence. In this paper, a composite structure composed of dielectric microsphere and metallic planar nanolayers is proposed to enhance the fluorescence far-field directional emission intensity and improve the fluorescence collection efficiency. The excitation process and the emission process of quantum dots (QDs) located between the dielectric microspheres and the gold layer are investigated by the finite difference time domain (FDTD) method. In the emission process, the emission of QDs in a homogeneous medium is isotropic. Therefore, we usually select several special polarizations in theoretical analysis state for research. In this paper, we first study the effect of the structure on the fluorescence emission enhancement of QDs when the QDs are in the <i>x-</i>, <i>y-</i>, and<i> z-</i>polarization state. Some results can be obtained as shown below. When the radiation direction of the QDs is perpendicular to the microsphere plane layered structure, the structure is coupled with the emitted fluorescence, thereby realizing the directional enhancement of the emitted fluorescence of the QDs, and the obvious fluorescence enhancement is obtained in the <i>x-</i> and <i>y-</i>polarization state. Therefore, in the research, we choose and investigate the dipole light source of <i>x</i>-polarization state. We mainly study the influence of microsphere radius, refractive index, and QDs position on the fluorescence directional enhancement. The QDs as a fluorescent material are coated in polymethyl methacrylate (PMMA) to control the distance from the gold layer to tune the fluorescence enhancement. The structure is based on the synergistic effect among plasmon coupling, whispering gallery mode and photonic nanojet, which enhances the far-field fluorescence of QDs by a factor of 230, and the fluorescence collection efficiency is as high as 70%. Comparing with the enhanced fluorescence of the dielectric microspheres and the gold sphere dimer composite structure, the distance between the gold sphere dimers is not easy to control, and the QDs should be placed at specific positions between the gold spheres. The structure we propose is more convenient to implement. In this paper, not only the emission enhancement process of QDs is studied in detail, but also the excitation process of QDs is investigated. Our proposed dielectric microsphere metal planar nanolayered structure can enhance the excitation of QDs in most areas, proving that our designed structure can effectively realize the excitation enhancement of QDs. The above results have very important applications in the fluorescence biological detection, imaging, and light-emitting devices.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3