Author:
Zhang Peng,Teng Hao,Yang Hao,Lü Ren-Chong,Wang Ke-Jian,Zhu Jiang-Feng,Wei Zhi-Yi, , , ,
Abstract
We report a femtosecond chirped-pulse amplification (CPA) system based on block material stretcher and grism compression. An optical material block is employed in Herriott multi-reflection configuration as a pulse stretcher, and a transmission grating is combined with dispersion prism to form grism as a compressor which can provide the negative second and third-order dispersion. By optimizing the prism vertex angle and grating line density, the grism can completely compensate for the third-order material dispersion. We obtain shorter compressed pulses. In the experiment, the stretched pulses are amplified by regenerative amplifier, which amplifies the 800 nm seed pulse to 2.30 W under the 11.4 W, 527 nm, 1 kHz pumping conditions, and the spectral width of the amplified pulse is 26.7 nm. The amplified pulses are compressed to 39.6 fs, which is close to the Fourier transform limit of 35.2 fs. The design of the system simplifies the structure of the conventional chirped pulse amplification system, reduces the space size of the optical path, and improves the operational stability of the laser system. With the block material stretcher and grism compressor, the whole CPA laser system is very compact and can be used as a reliable light source for subsequent amplification as well as ultrafast phenomenon studies.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy