Evaluation of uncertainty in measuring thin crystal thickness and extinction distance by Kossel-Möllenstedt pattern analysis

Author:

Lou Yan-Zhi,Li Yu-Wu, ,

Abstract

In this paper, the local thickness of single crystal Si film sample and the extinction distance <inline-formula><tex-math id="M11">\begin{document}$ {\xi }_{400} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20212271_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20212271_M11.png"/></alternatives></inline-formula> of the (400) plane of Si crystal are obtained by analyzing the double-beam converging beam diffraction (CBED) pattern of single crystal Si film sample under the 200 kV of accelerated voltage. The factors affecting the measurement uncertainty are analyzed, and the influence coefficients of each factor on the measurement uncertainty are discussed by using the concept of first-order partial derivative. The measurement uncertainty of thin crystal thickness and extinction distance are evaluated and expressed according to national standards GB/T 27418-2017. The conclusions are as follows. The local thickness of the measured Si crystal is estimated at 239 nm, the combined standard uncertainty is 5 nm, and the relative standard uncertainty is 2.2%. With the inclusion probability being 0.95, the coverage factor is 2.07 and the expanded uncertainty is 11 nm. With the accelerated voltage being 200 kV, the extinction distance of Si crystal (400) plane is estimated at 194 nm, the combined standard uncertainty of the extinction distance is 20 nm, and the relative standard uncertainty of the extinction distance is 10%. With the inclusion probability being 0.85, the coverage factor is 1.49 and the expanded uncertainty is 30 nm. The main factors that can affect the combined standard uncertainty of sample thickness <i>t</i><sub>0</sub> are camera constant, accelerating voltage and sample thickness, while the factors that influence the combined standard uncertainty of extinction distance are camera constant, accelerating voltage and extinction distance. The influence of the uncertainties of the measurement data of the Kossel-Möllenstedt pattern on the uncertainty of the extinction distance is <inline-formula><tex-math id="M12">\begin{document}${n}_{i}{\left( {\xi }/{t}\right)}^{3}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20212271_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20212271_M12.png"/></alternatives></inline-formula> times that on the sample thickness, and their influence on the slope of the fitting line is about <inline-formula><tex-math id="M13">\begin{document}$ {n}_{i} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20212271_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20212271_M13.png"/></alternatives></inline-formula> times that on the intercept of the line, where <inline-formula><tex-math id="M14">\begin{document}$ {n}_{i} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20212271_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20212271_M14.png"/></alternatives></inline-formula> is a positive integer and greater than or equal to 1. If the sample is not too thin, that is, <inline-formula><tex-math id="M15">\begin{document}$ {n}_{i} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20212271_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20212271_M15.png"/></alternatives></inline-formula> is greater than 1, then the uncertainty of crystal thickness will be smaller than the uncertainty of extinction distance.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference20 articles.

1. Shi J A, Zhang Q H, Gu L 2017 J. Chin. Electron Microsc. Soc. 36 18
时金安, 张庆华, 谷林 2017 电子显微学报 36 18

2. Heo Y U 2020 Appl. Microsc. 50 325

3. Liu Y, Zhao D S, Nie X, Tao H Y, Wang J B, Gui J N 2012 J. Chin. Electron Microsc. Soc. 31 130
刘玉, 赵东山, 聂鑫, 陶红玉, 王建波, 桂嘉年 2012 电子显微学报 31 130

4. Lou Y Z 2021 J. Chin. Electron Microsc. Soc. 40 234
娄艳芝 2021 电子显微学报 40 234

5. Castro Riglos M V, Tolley A 2007 Appl. Surf. Sci. 254 420

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3