Classical correspondence of quantum entanglement in mesoscopic circuit

Author:

Fan Hong-Yi,Wu Ze, ,

Abstract

Since the birth of quantum mechanics, its classical correspondence (or analogy) has been a hot topic for physicists. In this paper, we first discuss whether there is a classical correspondence of quantum entanglement. We give a positive answer through the following examples: in the framework of quantization of mesoscopic circuits, two mesoscopic capacitance inductance (LC) circuits with mutual inductance are proved to be the source of quantum entanglement by using the integration within an ordered product, and then the formula of their characteristic frequency is obtained, It is found that it is similar to the expression of the small oscillating frequency of a classical system described below. The classical system is shown in <xref ref-type="fig" rid="Figure1">Fig. 1</xref>. Two walls are connected with the same spring. And between the two springs a sliding trolley can move on a smooth table. The trolley is hung with a simple pendulum, The small oscillating frequency of the system is calculated by analytical mechanics. It is found that the swing of the simple pendulum will cause the trolley to oscillate back and forth. The mutual restraint effect of the pendulum, the trolley and the spring reflects the “entanglement” between them.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3