High-peak-power orthogonally-polarized dual-wavelength Nd:YLF/BaWO<sub>4 </sub>Raman laser

Author:

Fan Li,Xiang Ke-Yun,Shen Jun,Zhu Jun,

Abstract

Orthogonally-polarized dual-wavelength laser has significant practical applications in various fields, such as precision metrology, terahertz radiation generation, differential radar, spectral analysis. The Nd:YLF crystal has two orthogonally-polarized emission peaks with comparable emission cross sections, high-energy storage capability and relatively weak thermal lens effect. Owing to these properties, it has been recognized as a suitable gain medium for generating orthogonally-polarized dual-wavelength laser. In this paper, the Nd:YLF crystal with low doping concentration is employed as a laser gain medium to produce 1047 nm and 1053 nm dual-wavelength fundamental lasers with orthogonal polarizations, and the risk of thermal cracking of Nd:YLF crystal is reduced by appropriately increasing the pump spots. Using the intracavity Raman frequency shift in BaWO<sub>4</sub> crystal, orthogonally-polarized dual-wavelength Raman lasers at 1159.9 nm and 1167.1 nm are achieved to have high peak power. Under the total incident pump power of 40 W and a pulse repetition rate of 5 kHz, the maximum dual-wavelength Raman output power is obtained to be 2.67 W. The corresponding total optical conversion efficiency is 6.7%. For 1159.9 nm and 1167.1 nm Raman laser, their maximum average output power values are 1.31 W and 1.36 W, respectively. Their narrowest pulse widths are 1.50 ns and 1.53 ns, and the corresponding peak power values are as high as 174.7 kW and 177.8 kW, respectively. The results show that the problem of thermal cracking of Nd:YLF crystal at high pump power can be solved by reducing the doping concentration and increasing the pump spot. The Nd:YLF/BaWO<sub>4</sub> is a promising crystal combination for realizing orthogonally-polarized dual-wavelength Raman laser.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3