Author:
Jiang Bi-Yi,Zhou Fei-Chi,Chai Yang, ,
Abstract
With the increasing demands for processing images and videos at edge terminals, complementary metal oxide semiconductor (CMOS) hardware systems based on conventional Von Neumann architectures are facing challenges in terms of energy consumption, speed, and footprint. Neuromorphic devices, including resistive random access memory with integrated storage-computation characteristic and optoelectronic resistive random access memory with highly integrated in-sensor computing characteristic, show great potential applications in image processing due to their high similarity to biological neural systems and advantages of high energy efficiency, high integration level, and wide bandwidth. These devices can be used not only to accelerate large numbers of computational tasks in conventional image preprocessing and higher-level image processing algorithms, but also to implement highly efficient biomimetic image processing algorithms. In this paper, we first introduce the state-of-the-art neuromorphic resistive random access memory and optoelectronic neuromorphic resistive random access memory, then review the hardware implementation of and challenges to image processing based on these devices, and finally provide perspectives of their future developments.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference116 articles.
1. Ma Y, Wu J, Long C, Lin Y B 2021 IEEE Internet Things J. 9 2802
2. Machida F, Andrade E 2021 2021 IEEE 5th International Conference on Fog and Edge Computing (ICFEC) Melbourne, Australia, May 10–13, 2021 p66
3. Pilli S K, Nallathambi B, George S J, Diwanji V 2015 2014 2nd International Conference on Electronics and Communication Systems (ICECS) Coimbatore, India, Feburary 26–27, 2014 p1
4. Chaki J, Dey N 2018 A Beginner's Guide to Image Preprocessing Techniques (Vol. 1) (Boca Raton: CRC Press)
5. Zhang J F, Lee C E, Liu C, Shao Y S, Keckler S W, Zhang Z 2019 2019 Symposium on VLSI Circuits Kyoto, Japan, June 9–14, 2019 pC306
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献