Stable transmission of low energy electrons in glass tube with outer surface grounded conductively shielding

Author:

Li Peng-Fei,Yuan Hua,Cheng Zi-Dong,Qian Li-Bing,Liu Zhong-Lin,Jin Bo,Ha Shuai,Wan Cheng-Liang,Cui Ying,Ma Yue,Yang Zhi-Hu,Lu Di,Reinhold Schuch,Li Ming,Zhang Hong-Qiang,Chen Xi-Meng, , , , , , ,

Abstract

<sec>The electron microbeam is useful for modifying certain fragments of biomolecule. It is successful to apply the guiding effect to making the microbeam of positively charged particles by using single glass capillary. However, the mechanism for the electron transport through insulating capillaries is unclear. Meanwhile, previous researches show that there are oscillations of the transmission intensity of electrons with time in the glass capillaries with outer serface having no grounded conductive shielding, So, the application of glass capillary to making the microbeam of electrons is limited.</sec><sec>In this paper, the transmission of 1.5 and 0.9 keV electrons through the glass capillary without/with the grounded conductive-coated outer surface are investigated, respectively. This study aims to understand the mechanism for low energy electron transport in the glass capillaries, and find the conditions for the steady transport of the electrons. Two-dimensional angular distribution of the transported electrons and its time evolution are measured. It is found that the intensity of the transported electrons with the incident energy through the glass capillaries for the glass capillaries without and with the grounded conductive-coated outer surface show the typical geometrical transmission characteristics. The time evolution of the 1.5- keV electron transport presents an extremely complex variation for the glass capillary without the grounded conductive-coated outer surface. The intensity first falls, then rises and finally oscillates around a certain mean value. Correspondingly, the angular distribution center experiences moving towards positive-negative-settlement. In comparison, the charge-up process of the 0.9 keV electron transport through the glass capillary with the grounded conductive-coated outer surface shows a relatively simple behavior. At first, the intensity declines rapidly with time. Then, it slowly rises till a certain value and stays steady subsequently. The angular distribution of transported electrons follows the intensity distribution in general, but with some delay. It quickly moves to negative direction then comes back to positive direction. Finally, it regresses extremely slowly and ends up around the tilt angle. To better understand the physics behind the observed phenomena, the simulation for the interaction of the electrons with SiO<sub>2</sub> material is performed to obtain the possible deposited charge distribution by the CASINO code. Based on the analysis of the experimental results and the simulated charge deposition, the conditions for stabilizing the electron transport through glass capillary arepresented.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3