Research on Chinese stock market crash early warning based on improved log-periodic power law model

Author:

Wu Jun-Chuan,Tang Zhen-Peng,Du Xiao-Xu,Chen Kai-Jie,

Abstract

This paper is based on the famous log-periodic power law model (LPPL) in financial physics to warn of the collapse of China's Shanghai Composite Index and GEM Index in June 2015. In view of the existing research using the LPPL model to warn of market crash, only the historical trading data of the market are considered. For the first time, investor sentiment factors are incorporated into the modeling process of LPPL model to improve the early warning effect of LPPL model. Using the text mining technology combined with semantic analysis methods to grasp the financial media's stock evaluation report for word frequency statistics, in order to build the medium sentiment index. The further modified expression of the crash probability function in the LPPL model is represented as a function of historical trading data and medium sentiment, and thus constructing an LPPL-MS combination model to warn of stock market crash. The empirical results show that the LPPL-MS combination model constructed in this paper has higher warning accuracy than the LPL model, and its prediction crash time is closer to the actual crash time of the Shanghai Index and GEM Index, and its fitting results have passed the relevant test.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference48 articles.

1. Sornette D, Johansen A, Bouchaud J P 1995 J. Phys. I. 6 167

2. Johansen A, Sornette D 1999 Risk. 12 91

3. Jensen M C 1967 Financ. Anal. J. 23 77

4. Fama U 1965 J. Bus. 38 34

5. Jiang Z Q, Tian J W, Zhou W X 2019 J. Manag. Sci. China 22 92
蒋志强, 田婧雯, 周炜星 2019 管理科学学报 22 92

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3