Deep learning molecular dynamics simulation on microwave high-temperature dielectric function of silicon nitride

Author:

Li Zhi-Qiang,Tan Xiao-Yu,Duan Xin-Lei,Zhang Jing-Yi,Yang Jia-Yue, , ,

Abstract

Silicon nitride (<i>β</i>-Si<sub>3</sub>N<sub>4</sub>) is a most promising thermal wave-transparent material. The accurate measurement of its high-temperature dielectric function is essential to solving the “black barrier” problem of hypersonic vehicles and accelerating the design of silicon nitride-based thermal wave-transparent materials. Direct experimental measurement at high temperature is a difficult job and the accuracy of classical molecular dynamics (CMD) simulations suffers the choice of empirical potential. In this work, we build a <i>β</i>-Si<sub>3</sub>N<sub>4</sub> model on a nanoscale, train the deep learning potential (DLP) by using first-principles data, and apply the deep potential molecular dynamics (DPMD) to simulate the polarization relaxation process. The predicted energy and force by DLP are excellently consistent with first-principles calculations, which proves the high accuracy of DLP. The RMSEs for <i>β</i>-Si<sub>3</sub>N<sub>4</sub> are quite low (0.00550 meV/atom for energy and 7.800 meV/Å for force). According to the Cole-Cole formula, the microwave dielectric function in the temperature range of 300–1000 K is calculated by using the deep learning molecular dynamics method. Compared with the empirical potential, the computational results of the DLP are consistent with the experimental results in the sense of order of magnitude. It is also found that the DPMD performs well in terms of computational speed. In addition, a mathematical model of the temperature dependence of the relaxation time is established to reveal the pattern of relaxation time varying with temperature. The high-temperature microwave dielectric function of silicon nitride is calculated by implementing large-scale and high-precision molecular dynamics simulations. It provides fundamental data for promoting the application of silicon nitride in high-temperature thermal transmission.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference36 articles.

1. Mehra N, Singh R K, Bera S C 2015 Prog. Electromagn. Res. B 63 161

2. Hartunian R A, Stewart G E, Fergason S D 2007 Aerospace Corp. 5309 1

3. Jayaraman B, Shyy W 2008 Prog. Aerosp. Sci. 44 139

4. Zhong W F, Wu M Q 2014 Piezoelectr. Acoustoopt. 36 1004
钟汶帆, 吴孟强 2014 压电与声光 36 1004

5. Zhang T, Zhang S R, Wu M Q, Sang W J, Gao Z P, Li Z P 2007 J. Electron. Sci. Technol. 5 4

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3