Effect of Sb/Bi atom substitution site on electronic transport properties of Mg<sub>2</sub>Si<sub>0.375</sub>Sn<sub>0.625</sub> alloy

Author:

Li Xin,Xie Hui,Zhang Ya-Long,Ma Ying,Zhang Jun-Tao,Su Heng-Jie,

Abstract

Mg<sub>2</sub>(Si,Sn)-based thermoelectric materials, which are environmentally friendly and low-cost, have great development potential in a moderate temperature range. Electronic transport properties of Mg<sub>2</sub>Si<sub>1-<i>x</i></sub>Sn<sub><i>x</i></sub> alloys can be optimized by doping elements. Doping is still one of the most effective methods of optimizing electronic transport performance, such as carrier concentration, mobility, and effective mass. The most effective doping elements are Sb and Bi. Much attention has been paid to the influence of element type and doping content. Different substitution sites will also greatly affect the electronic transport parameters. In this work, the defect formation energy value of Mg<sub>2</sub>Si<sub>0.375</sub>Sn<sub>0.625</sub> alloy for substituting Sb atoms and Bi atoms for Sn sties and Si sites, respectively, are calculated by first-principles calculations. The influence on electronic transport parameters is systematically analyzed by combining the calculated results of band structures and density of states. Corresponding component Sb and Bi atoms doped Mg<sub>2</sub>Si<sub>0.375</sub>Sn<sub>0.625</sub> alloys are prepared by rapid solidification method, and microstructures, Seebeck coefficients, and electrical conductivities of the alloys are measured. Combined with the predicted results by solving the Boltzmann transport equation, electronic transport performances are compared and analyzed. The results indicate that both Sn and Si sites are equally susceptible to Sb and Bi doping, but the Si sites are preferentially substituted due to their lower ∆<i>E</i><sub>f</sub> values. Doped Bi atoms provide a higher electron concentration, and Sb atoms offer higher carrier effective mass. Thus, the maximum <i>σ</i> value of the Mg<sub>2</sub>Si<sub>0.375</sub>Sn<sub>0.615</sub>Bi<sub>0.01</sub> alloy is 1620 S/cm. The maximum <i>S</i> value of the Mg<sub>2</sub>Si<sub>0.365</sub>Sn<sub>0.625</sub>Sb<sub>0.01</sub> alloy is –228 μV/K. Correspondingly, the highest <i>PF</i> value for this alloy is 4.49 mW/(m·K) at <i>T</i> = 800 K because of the dominant role of <i>S</i> values. Although its power factor is slightly lower, the Mg<sub>2</sub>Si<sub>0.375</sub>Sn<sub>0.615</sub>Sb<sub>0.01</sub> alloy is expected to exhibit lower lattice thermal conductivity due to the lattice shrinkage caused by substituting Sb sites for Sn sites. The optimal doping concentration of the Bi-doped alloy is lower than that of the Sb-doped alloy. These results are expected to provide a significant reference for optimizing the experimental performance of Mg<sub>2</sub>(Si, Sn)-based alloys.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference38 articles.

1. Bahrami A, Schierning G, Nielsch K 2020 Adv. Energy Mater. 10 1904159

2. Mao J, Chen G, Ren Z F 2021 Nat. Mater. 20 454

3. Zhao Y H, Zhang R, Zhang B P, Yin Y, Wang M J, Liang D D 2021 Acta Phys. Sin. 70 128401
赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆 2021 物理学报 70 128401

4. Cheng L D, Liu R H, Shi X 2018 Thermoelectric Materials and Devices (Beijing: Science Press) pp8–13 (in Chinese)
程立东, 刘瑞恒, 史迅 2018 热电材料与器件 (北京: 科学出版社) 第8—13页

5. Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102
范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 物理学报 70 137102

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3