Modelling of spall damage evolution and fragment distribution for melted metals under shock release

Author:

Zhang Feng-Guo,Liu Jun,He An-Min,Zhao Fu-Qi,Wang Pei,

Abstract

A strong shock-wave, produced by plate impact, explosive detonation or laser irradiation, can induce metal materials to melt. Reflection of the triangular pressure wave from the free surface generates a strong tensile stress in the liquid state, resulting in the creation of an expanding cloud of liquid debris. This phenomenon is called micro-spalling. The understanding of spall damage evolution and dynamic fragmentation of melted metal under shockwave loading and subsequent releasing is an issue of considerable importance for both basic and applied science, to predict the evolution of engineering structures subjected to explosive detonation in implosive dynamics or inertial confinement fusion, the latter involving high energy laser irradiation of thin metallic shells. For dynamic failure processes, spall fracture in solid material has been extensively studied for many years, while scarce data can be found about how such a phenomenon can evolve after being melted partially or fully when being compressed or released. In this paper, by studying the physical laws of void evolution in melted metals, we expect to reveal the mode and criterion of void coalescence, inertial and temperature effects on void distribution and evolution, and the relationship between fragment distribution and characteristics of breakup of damaged material. According to these physical laws, we can develop theoretical model to describe the damage evolution and fragment distribution of metal that melts when shock releases. This model is implemented as a failure criterion in a one-dimensional hydrocode. The experimental results and computational results are in fairly good agreement with each other. Some discrepancies are explained by using both experimental uncertainties and model limitations which are carefully pointed out and discussed. We believe that these results can deepen our physical understanding of the damage evolutions of metals and improve the credibility of numerical simulation on the damage and fragmentation of materials under implosive loading.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference47 articles.

1. Shao J L, Wang C, Wang P, He A M, Zhang F G 2019 Mech. Mater. 131 78

2. Holtkamp D B, Clark D, Rerm E, Gallegos R A, Hammon D, Hemsing W F, Hogan G E, Holmes V H, King N S P, Liljestrand R, Lopez R P, Merrill F E, Morris C L, Morley K B, Murray M M, Pazuchanics P D, Prestridge K P, Quintana J P, Saunders A, Schafer T, Shinas M A, Stacy H L 2003 AIP Conference Proceeding Shock Compression Condensed Matter, Melville, New York, July 20–25, 2003 pp477–482

3. Lescoute E, de Rességuier T, Chevalier J M, Loison D, Cuq-Lelandais J P, Boustie M, Breil J, Maire P H, Schurtz G 2010 J. Appl. Phys. 108 093510

4. Zhang L, Li Y H, Zhang Z G, Li X M, Hu C M, Cai L C 2017 Explos. Shock Waves 37 692
张林, 李英华, 张祖根, 李雪梅, 胡昌明, 蔡灵仓 2017 爆炸与冲击 37 692

5. Chen Y T, Ren G W, Tang T G, Hu H B 2013 Acta Phys. Sin. 62 116202
陈永涛, 任国武, 汤铁钢, 胡海波 2013 物理学报 62 116202

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3