Author:
Zhou Shu-Xing,Fang Ren-Feng,Wei Yan-Feng,Chen Chuan-Liang,Cao Wen-Yu,Zhang Xin,Ai Li-Kun,Li Yu-Dong,Guo Qi, , ,
Abstract
In order to improve the radiation-resistance ability of the InP based high electron mobility transistor (InP HEMT) by optimizing the epitaxial structure design, a series of InP HEMT epitaxial structure materials with different structure parameters is grown by gas source molecular beam epitaxy. These samples are irradiated at room temperature by a 1.5-MeV electron beam at the same irradiation fluence of 2 × 10<sup>15</sup> cm<sup>–2</sup>. The electrical properties of the two-dimensional electron gas (2DEG) for InP HEMT epitaxial materials before and after irradiation are measured by Hall measurements to obtain the changes of the normalized 2DEG density and electron mobility along with the epitaxial structure parameters. The relation between 2DEG radiation damage and epitaxial structure parameters (such as Si-δ-doping density, spacer thickness, channel thickness and channel In content) of InP HEMT epitaxial structure materials is analyzed. The results show that the 2DEG of the InP HEMT epitaxial structure material with higher Si-δ-doping density, thinner spacer thickness, thicker channel thickness and lower channel In content has lower radiation damage, which possesses the stronger radiation-resistance ability.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. 975 nm量子阱激光二极管的质子位移损伤;Acta Optica Sinica;2023