Analytical studies of Rayleigh-Taylor instability growth of double-cone ignition scheme in 2020 winter experimental campaign

Author:

Fang Ke,Zhang Zhe,Li Yu-Tong,Zhang Jie, , , , ,

Abstract

In laser direct-driven fusion, high power lasers are used to ablate the target shell, compress and heat the fuel with the spherical focusing rocket effect, to approach to the fusion ignition conditions. The shaped nanosecond laser pulses compress and accelerate the DT target symmetrically, and forms a high density plasma hot-spot at stagnation. The hydrodynamic instabilities, especially the Rayleigh-Taylor instability, which happens at the interface of plasmas, may destroy the compressed shells, and thus reduce the temperature and density of the hot-spot. In this paper is analyzed theoretically the hydrodynamic instability growth under the conditions in the 2020 winter experiment of the double-cone ignition scheme proposed by Zhang et al. (<ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://doi.org/10.3788/HPLPB20132504.0903">2020 <i>Philos. Trans. A Math. Phys. Eng. Sci.</i> <b>378</b> 20200015</ext-link>). Both analytical model and one-dimensional simulations indicate that the fuel shells are compressed with low adiabat under the current quasi-isentropic waveform. The Rayleigh-Taylor instability remains in safe region with a maximum perturbation amplitude reaching 0.25 of the shell thickness at the most peak grown moment. The growth of the hydrodynamic instabilities can be further reduced by increasing the thickness of the shell, through using high foot pre-pulses and improving the uniformity of the target surface and laser irradiation in the future design.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3