Ground-state chiral currents in the synthetic Hall tube
-
Published:2022
Issue:16
Volume:71
Page:160303
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Guan Xin,Chen Gang,Pan Jing,You Xiu-Fen,Gui Zhi-Guo, , , ,
Abstract
Hall tube is an important model to simulate the quantum Hall effect. However it hasn't been realized in superconducting circuits which have emerged as a promising platform for macro-controlling quantum effect. Taking advantage of the fine tunability of superconducting circuits, the three-chain superconducting transmon qubits with periodic boundary condition are designed in this paper. For constructing a synthetic Hall tube, ac magnetic fluxes are introduced to drive each transmon qubit. The gauge field emerged in this synthetic Hall tube can be tuned independently by properly choosing the driving phases. Then the ground-state chiral currents are discovered in this synthetic Hall tube, which are Meissner current on <inline-formula><tex-math id="M1">\begin{document}$xy$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M1.png"/></alternatives></inline-formula> plane (<inline-formula><tex-math id="M2">\begin{document}$xy$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M2.png"/></alternatives></inline-formula>-M), vortex current on <inline-formula><tex-math id="M3">\begin{document}$xy$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M3.png"/></alternatives></inline-formula> plane (<inline-formula><tex-math id="M4">\begin{document}$xy$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M4.png"/></alternatives></inline-formula>-V), vortex current on <inline-formula><tex-math id="M5">\begin{document}$xz$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M5.png"/></alternatives></inline-formula> plane (<inline-formula><tex-math id="M6">\begin{document}$xz$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M6.png"/></alternatives></inline-formula>-V), and vortex current on both <inline-formula><tex-math id="M7">\begin{document}$xy$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M7.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$xz$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M8.png"/></alternatives></inline-formula> planes (DV). For distinguishing these chiral currents, four order parameters <inline-formula><tex-math id="M9">\begin{document}$J_{C//}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M9.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M10">\begin{document}$J_{AB}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M10.png"/></alternatives></inline-formula> (<inline-formula><tex-math id="M11">\begin{document}$J_{BC}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M11.png"/></alternatives></inline-formula>), and <inline-formula><tex-math id="M12">\begin{document}$J_{CA}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M12.png"/></alternatives></inline-formula> are defined. Then the ground-state quantum phase diagrams are mapped out. The emergence of the different quantum phases is due to the competition between the coupling strengths <inline-formula><tex-math id="M13">\begin{document}$\tilde{t}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M13.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M14">\begin{document}$t_{CA}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220293_M14.png"/></alternatives></inline-formula>. The Meissner and vortex currents emerging in this synthetic Hall tube also emerge in type II superconductor, which can generate an opposite field to weaken the influence of the applied field. Thus this synthetic Hall tube can be used as a diamagnet. At last we consider the influence of the imperfections in device fabrication. We proof when the strength of the imperfection is not large enough, the quantum phase diagrams shown in this paper remain valid. Moreover, the possible experimental observations of the ground-state chiral currents are addressed. The ground state of this synthetic Hall tube can be generated by applying microwave pulses. Then the corresponding density matrix can be constructed by the quantum state tomography. After constructing the density matrix, the order parameters can be obtained by calculating the trace. These results enrich the quantum currents in Hall tube and provide a new route to explore novel quantum phases.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference43 articles.
1. Tai M E, Lukin A, Rispoli M, Menke T, Borgnia D, Preiss P M, Grusdt F, Kaufman A M, Greiner M 2017 Nature 546 519 2. Liu B, Zhou X F, Chen G, Jia S T 2020 Acta Phys. Sin. 69 080501 刘彪, 周晓凡, 陈刚, 贾锁堂 2020 物理学报 69 080501 3. Creutz M 1999 Phys. Rev. Lett. 83 2636 4. Hung J S C, Busnaina J H, Chang C W S, Vadiraj A M, Nsanzineza I, Solano E, Alaeian H, Rico E, Wilson C M 2020 Phys. Rev. Lett. 127 100503 5. Mancini M, Pagano G, Cappellini G, Livi L, Rider M, Catani J, Sias C, Zoller P, Inguscio M, Dalmonte M, Fallani L 2015 Science 349 1510
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|