Source depth estimation using angle-range interference pattern in deep ocean bottom bounce area

Author:

Zhu Qi-Xuan,Sun Chao,Liu Xiong-Hou, ,

Abstract

Passive sonar limits the ability to sample vertical scale spatiotemporally, and the received signal is indistinct by noise, resulting in the performance degradation or even failure of the source depth estimation method in deep ocean bottom bounce area. When vertical line array is arranged near the sea surface to locate the source by matched-field processing in bottom bounce area, there is great ambiguity in depth dimension. In this work, the problem of source depth estimation in bottom bounce area is addressed. The peak stripe of angle-range interference pattern is modeled and analyzed based on the ray theory, and a source depth estimation method is proposed, which comprises two parts: estimating sound source depth by utilizing peak stripe fluctuation characteristic combined with spatial spectrum analysis, and reconstructing interference pattern using principal component analysis. The flowchart of the method is listed as follows. Firstly, the spatial spectrum corresponding to each range is spliced to obtain the original angle-range interference pattern. Secondly, the original interference pattern is denoised by principal component analysis to obtain the reconstructed interference structure. Finally, the fluctuation period of peak fringes is extracted from the reconstructed interference pattern to calculate the source depth. Under the low signal-to-noise ratio (SNR) condition, the peak stripe destroyed by noise will reappear in the reconstructed interference pattern and the estimation result of sound source depth will be more accurate, making the source depth estimation method suitable for bottom bounce area. The method combines the space-time cumulative gain of the array and the low-rank characteristic of the interference pattern. The simulation results obtained by Bellhop indicate that the fluctuation period of peak stripe depends on the depth and frequency of the source, which is consistent with the modeling result, and the source depth can be estimated precisely by spatial Fourier transform. The simulation results also show that the rank of the interference pattern is very low and the peak stripe can be composed of a few principal components. Monte Carlo experimental results indicate that the estimated results of the source depth by using reconstructed interference pattern are more accurate than those without using principal component analysis at low SNR condition. The proposed method can achieve more than 80% accuracy at –3 dB SNR.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3