Molecular dynamics simulation of size dependent plastic deformation mechanism of CoCrFeNiMn crystalline/amorphous dual-phase high-entropy alloys

Author:

An Min-Rong,Li Si-Lan,Su Meng-Jia,Deng Qiong,Song Hai-Yang, , ,

Abstract

Recently proposed crystalline/amorphous dual-phase high-entropy alloy is an effective strategy to obtain high-entropy, high-strength and high-toughness alloys. And the relative plastic deformation mechanism is dependent on the size of component phases. The effect of component phase size on the plastic deformation mechanism of CoCrFeNiMn crystalline/amorphous dual-phase high-entropy alloy is investigated by molecular dynamics simulation. The results indicate that the size of amorphous phase has a significant effect on the mechanical behavior and plastic deformation mechanism of high entropy alloy. For the sample with small thickness of amorphous phase, the plastic deformation is dominated by dislocation slip and phase transformation of face-centered-cubic structure to hexagonal-close-packed structure. Especially, the deformation twins and Lomer-Cottrell locks are observed in the sample with amorphous layer spacing of 1 nm. When the thickness of the amorphous layer is moderate, the plastic deformation of the dual-phase high-entropy alloy is realized mainly through the dislocation slip, phase transformation of face-centered-cubic structure to hexagonal-close-packed structure in crystalline part and shear band multiplication in amorphous part. If the amorphous layer spacing is larger, the plastic deformation of the high-entropy alloy is dominated by the formation of uniform shear bands in the amorphous phase. In addition, the amorphous phase in the dual-phase high-entropy alloy structure can stabilize the crystalline grains. The results of this study can provide a guidance for designing and preparing high entropy alloy with high performance.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3