Preliminary study on Reynolds stress model based on <i>ν</i><sub><i>t</i></sub>-scale equation

Author:

Chen Yan-Jun,Wang Sheng-Ye,Fu Xiang,Liu Wei,

Abstract

Reynolds stress model has always been the frontier and challenging problem in turbulence model theory research, where improving numerical robustness is the key to its wide application in engineering. Referring to the classical <inline-formula><tex-math id="M8">\begin{document}$k$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220417_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220417_M8.png"/></alternatives></inline-formula>-<inline-formula><tex-math id="M9">\begin{document}$kL$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220417_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220417_M9.png"/></alternatives></inline-formula> turbulence model, a new <inline-formula><tex-math id="M10">\begin{document}${\nu_t}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220417_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220417_M10.png"/></alternatives></inline-formula>-scale equation is constructed and used to couple the SSG/LRR model to form a so-called SSG/LRR-<inline-formula><tex-math id="M11">\begin{document}${\nu_t}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220417_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220417_M11.png"/></alternatives></inline-formula> Reynolds stress model. Four benchmark cases, including zero pressure gradient turbulent plate boundary layer, airfoil wake flow, supersonic square duck flow and separated flow over NACA0012 airfoil at 45 degree angle of attack, are carried out to test the new turbulence model. At the same time, high-order numerical schemes are used to discretize the turbulence equations in order to assess its numerical robustness. The results are compared with those of SA eddy viscosity model and SSG/LRR-<inline-formula><tex-math id="M12">\begin{document}$\omega$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220417_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220417_M12.png"/></alternatives></inline-formula> Reynolds stress model. It is shown that the <inline-formula><tex-math id="M13">\begin{document}${\nu_t} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220417_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220417_M13.png"/></alternatives></inline-formula>-scale equation is strictly equal to zero at the viscous wall boundary. Compared with the traditional <inline-formula><tex-math id="M14">\begin{document}$\omega $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220417_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20220417_M14.png"/></alternatives></inline-formula>-scale, it has better numerical robustness. Along with this, the new model can be matched with the high-order numerical schemes and obtain a better efficiency in the mesh convergence. Moreover, the new model has the inherent advantage of Reynolds stress model in simulating the corner flow and has the potential in scale adaptive simulation of unsteady separated flow.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference29 articles.

1. Wilcox D C 2006 Turbulence Modeling for CFD (3rd Ed.) (La Canda: DCW Industries)

2. Chou P Y 1940 Chin. J. Phys. 4 1
周培源 1940 中国物理学报 4 1

3. Chou P Y 1945 Quart. Appl. Math. 3 38

4. Wang S Y, Wang G X, Dong Y D, Deng X G 2017 Acta Phys. Sin. 66 184701
王圣业, 王光学, 董义道, 邓小刚 2017 物理学报 66 184701

5. Wang S Y, Fu X, Yang X L, Zheng H B, Deng X G 2021 Adv. Mech. 51 29
王圣业, 符翔, 杨小亮, 郑浩榜, 邓小刚 2021 力学进展 51 29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3