Non-Markovian measure independent of initial states of open systems

Author:

He Zhi,Jiang Deng-Kui,Li Yan, ,

Abstract

In recent years, quantifying non-Markovian effect in open quantum system has become an important subject in the quantum decoherence control field. In this paper, a non-Markovian measure independent of the initial state of open system is proposed, thereby extending non-Markovian measure based on quantum Fisher information from the case where the initial state of the system is a pure state to the case where the initial state of the system is an arbitrary mixed state. As its application, the non-Markovian process is quantified by quantum Fisher information about a two-level system undergoing the three well-known dissipative channels, i.e. amplitude dissipative channel, phase damping channel, and random unitary channel. The results show that the conditions of non-Markovian processes in the three dissipative channels are independent of the selection of the initial state of the system by means of the quantum Fisher information of a phase parameter. Further, for amplitude dissipation channel and phase damping channel, the conditions for the non-Markovian processes to occur are equivalent to those given by trace distance, divisibility, quantum mutual information, quantum Fisher-information matrix, et al. As expected, for the case of amplitude dissipation channel, the corresponding results can reduce to the one in other paper (Lu X M, Wang X G, Sun C P <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://doi.org/10.1103/PhysRevA.82.042103">2010 <i>Phys. Rev. A</i><italic/> <b>82</b> 042103</ext-link>) by selecting the initial state of the system as an optimal pure state. However, for random unitary channel, the conditions of non-Markovian process are not equivalent to those for other measures. In addition, we also obtain an interesting relationship between quantum Fisher information and quantum coherence of the open system in the three dissipative channels, namely the square of quantum <inline-formula><tex-math id="M2">\begin{document}$l_1$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221053_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221053_M2.png"/></alternatives></inline-formula> coherence for the evolved state of system is exactly equal to the quantum Fisher information of the phase parameter. In a word, the obtained results not only improve the application scope of using the quantum Fisher information to detect non-Markovian effects in open systems, but also further highlight its important role in quantum information processing.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3