Coupling-induced microwave transmission transparency with quarter-wavelength superconducting resonators

Author:

Gao Hai-Yan,Yang Xin-Da,Zhou Bo,He Qing,Wei Lian-Fu, ,

Abstract

<sec>The electromagnetic induced transparency (EIT) to atomic systems and its various applications have been extensively investigated, both theoretically and experimentally. In this paper, we study how to similarly verify these phenomena in the waveguide coupled to the transmission line resonators. By making use of real space quantum scattering theory, we calculate the transmission spectrum of the waveguide photons scattered by a single quarter-wavelength transmission line resonator. Our experimental results show that the resonant microwave transporting along the feedline is completely reflected by the resonator. This is similar to the situation of the light absorbed by the resonant atomic medium, and thus its transmission is significantly suppressed.</sec><sec>Like the EIT phenomena in atomic gas, wherein the resonant absorption can be significantly suppressed by applying a strong pumping light to control the optical properties of medium, the transport properties of the resonant microwave can be investigated by coupling it into an auxiliary quarter-wavelength resonator in this paper. If the frequency of the auxiliary quarter-wavelength resonator is different from the resonant frequency, the calculated transmission spectrum shows that the coupling with auxiliary quarter-wavelength resonator induces the complete transmission of the resonant microwave. This is one of the features of the EIT-like effect, and can be simply explained as the frequency renormalization of the coupling resonators. Also, by adjusting the coupling strength between the resonators, the width of the microwave transmission spectrum window can be manipulated. Our experimental observations verify such an argument, but the phase shift mutation (another typical signs of the EIT effect) of the resonant microwave cannot be observed. In physics, this is because the interference between the transmitted microwave and the reflected micowave with different frequencies does not take place in the coupling region between the two resonators.</sec><sec>It is expected that the effects with the complete EIT-like phenomena can be observed, in future, by fabricating the sample of two quarter-wavelength transmission line resonators with the same frequency, and thus the coupling between the two resonators can be controlled.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3