Two-dimensional radiation hydrodynamic simulations of high-speed head-on collisions between high-density plasma jets

Author:

Yang Meng-Qi,Wu Fu-Yuan,Chen Zhi-Bo,Zhang Yi-Xiang,Chen Yi,Zhang Jin-Chuan,Chen Zhi-Zhen,Fang Zhi-Fan,Rafael Ramis,Zhang Jie, , , ,

Abstract

<sec>Head-on collisions of plasma jets are common hydrodynamic phenomena in astrophysical and laser-plasma interaction processes. Deriving scaling relationships between colliding plasmas and initial conditions of plasma jets is of great significance in optimizing the design and the data analysis of the relevant experiments. Double-cone ignition (DCI) scheme is an excellent platform for studying plasma jets’ collision, since the collision between high-speed, high-density plasma jets can be easily generated and characterized in both simulations and experiments.</sec><sec>In this work, we employ the upgraded two-dimensional arbitrary Eulerian-Lagrange (ALE) program MULTI-2D to simulate the collision process of plasma jets with high speed (≥100 km/s) and high density (≥10 g/cm<sup>3</sup>). Using the database obtained from the simulations, hydrodynamic scaling laws describing the collision process of plasma jets are derived by the Bayesian inference method in machine learning. The Bayesian inference method not only has the parameter estimation function of traditional least square method, but also possesses other potential advantages such as giving the probability distribution of estimated parameters. Numerical results show that the collision of plasma jets with open boundaries is easy to form an isochoric plasma distribution with high-density. Increasing the initial density and velocity of the plasma jet is helpful in enhancing the density and temperature of the colliding plasma. Increasing the initial temperature of plasma jet is beneficial to achieving colliding plasmas with a higher temperature, while leading plasma density and pressure to decrease after head-on collision. When the initial density, temperature and velocity of the plasma jets are set to be 15 g/cm<sup>3</sup>, 30 eV and 300 km/s, respectively, the colliding plasma density can reach more than 300 g/cm<sup>3</sup>. This is very favorable for the following fast electron heating process in the double-cone ignition (DCI) scheme.</sec><sec>The issue about quantum degeneracy after collision is discussed in this work. Under the typical initial conditions of plasma jets in DCI scheme (<inline-formula><tex-math id="M1">\begin{document}$100\,\,\rm{km}/\mathrm{s}\leqslant {V}_{0}\leqslant 500\,\,\rm{km}/\mathrm{s},10\,\,\rm{eV}\leqslant {T}_{0}\leqslant 100\,\,\rm{eV},10\,\,\mathrm{g}/\mathrm{c}\mathrm{m}^3\leqslant {\rho }_{0}\leqslant 50\,\,\mathrm{g}/\mathrm{c}\mathrm{m}^3)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220948_M1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220948_M1.png"/></alternatives></inline-formula>, both quantum degenerate plasma and classical non-degenerate plasma can be obtained in a temperature range between <inline-formula><tex-math id="M2">\begin{document}$ 0.3{T}_{F} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220948_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220948_M2.png"/></alternatives></inline-formula> (Fermi temperature) and <inline-formula><tex-math id="M3">\begin{document}$ 3{T}_{F} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220948_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="22-20220948_M3.png"/></alternatives></inline-formula>. By comparing the plasma temperature with the Fermi temperature of the collision, the criterion for achieving quantum degenerate plasma or non-degenerate plasma under given initial conditions is obtained with the help of the derived hydrodynamic scaling laws. The criterion shows that higher initial velocity, higher temperature and lower density of plasma jets are required if we want to obtain non-degenerate plasma after collision.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference35 articles.

1. Albertazzi B, Ciardi A, Nakatsutsumi M, Vinci T, Béard J, Bonito R, Billette J, Borghesi M, Burkley Z, Chen S 2014 Science 346 325

2. Li C, Ryutov D, Hu S, Rosenberg M, Zylstra A, Séguin F, Frenje J, Casey D, Johnson M G, Manuel M-E 2013 Phys. Rev. Lett. 111 235003

3. Yin C L, Li Y T, Lu X, Yuan D W, Zhong J Y, Yuan X H, Wei H G, Zhang K, Fang Y, Liao G Q, Su L N, Han B, Wang F L, Liang G Y, Yang S, Zhu J Q, Zhao G, Zhang J 2015 High Power Laser Part. Beams 27 032035

4. Pei X X, Zhong J Y, Zhang K, Zheng W D, Liang G Y, Wang F L, Li Y T, Zhao G 2014 Acta Phys. Sin. 14 145201
裴晓星, 仲佳勇, 张凯, 郑无敌, 梁贵云, 王菲鹿, 李玉同, 赵刚 2014 物理学报 14 145201

5. Ke Y, Yang X, Ma Y, Xu B, Ge Z, Gan L, Meng L, Wang S, Kawata S 2018 Phys. Plasmas 25 042706

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3