Electronic structures and transition properties of AsH<sup>+</sup> cation

Author:

Hou Qiu-Yu,Guan Hao-Yi,Huang Yu-Lu,Chen Shi-Lin,Yang Ming,Wan Ming-Jie,

Abstract

<sec>Potential energy curves (PECs), dipole moments (DMs) and transition dipole moments (TDMs) of the X<sup>2</sup>Π, a<sup>4</sup>Σ<sup>–</sup>, A<sup>2</sup>Σ<sup>–</sup>, b<sup>4</sup>Π, B<sup>2</sup>Δ, C<sup>2</sup>Σ<sup>+</sup>, D<sup>2</sup>Π, 2<sup>2</sup>Σ<sup>+</sup> states correlating with the three lowest dissociation channels of AsH<sup>+</sup> cation are calculated by using the multireference configuration interaction (MRCI) method. The Davidson correction, core-valence (CV) correlation, and spin-orbit coupling (SOC) effect are all considered. The aug-cc-pV5Z all-electron basis set of H atom and the aug-cc-pwCV5Z-PP pseudopotential basis set of As atom are both selected in the calculation.</sec><sec>In the complete active space self-consistent field (CASSCF) calculation, H (1s) and As (4s4p) shell are selected as active orbitals, As (3p3d) shells are selected as closed orbitals, which keeps doubly occupation, the remaining electrons are in the frozen orbitals. In the MRCI calculation, As (3p3d) shells are used for CV correlation, and the calculation accuracy can be improved. The SOC effects are considered with Breit-Pauli operators.</sec><sec>All calculated states are bound states. The X<sup>2</sup>Π is the ground state, which is a deep potential well, the dissociation energy is 3.100 eV. The b<sup>4</sup>Π, C<sup>2</sup>Σ<sup>+</sup> and D<sup>2</sup>Π are weakly bound states. The spectroscopic parameters are obtained by solving radial Schrodinger equation. To the best of our knowledge, there has been no study of the spectroscopy of AsH<sup>+</sup> cation so far. Comparing with Ⅴ-hydride cations <i>M</i>H<sup>+</sup> (<i>M</i> = N, P, As), the orders of the energy levels of the low-lying states for three ions are identical. The dissociation energy and harmonic frequency both decrease with the increase of the atomic weight of <i>M</i>.</sec><sec>At spin-free level, the PEC of b<sup>4</sup>Π state and the PEC of B<sup>2</sup>Δ state cross at about 1.70 Å. When SOC effects are taken into account, according to the rule of avoid-crossing, the <inline-formula><tex-math id="M5">\begin{document}$ {{{\rm{B}}^2}}{\Delta _{3/2}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M5.png"/></alternatives></inline-formula>state and <inline-formula><tex-math id="M6">\begin{document}$ {{{\rm{B}}^2}}{\Delta _{5/2}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M6.png"/></alternatives></inline-formula>state change to the double potential wells, and the avoided crossing between the <inline-formula><tex-math id="M7">\begin{document}$ {{{\rm{B}}^2}}{\Delta _{3/2}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M7.png"/></alternatives></inline-formula> (<inline-formula><tex-math id="M8">\begin{document}$ {{{\rm{B}}^2}}{\Delta _{3/2}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M8.png"/></alternatives></inline-formula>) state and <inline-formula><tex-math id="M9">\begin{document}${{\rm{b}}^4}{\Pi _{3/2}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M9.png"/></alternatives></inline-formula> (<inline-formula><tex-math id="M10">\begin{document}${{\rm{b}}^4}{\Pi _{5/2}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M10.png"/></alternatives></inline-formula>) state is observed. The transition dipole moment (TDM) of the <inline-formula><tex-math id="M11">\begin{document}$ {{{\rm{A}}^2}}{\Sigma ^ - } \to {{{\rm{X}}^2}}\Pi $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M11.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M12">\begin{document}$ {{{\rm{a}}^4}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M12.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M13">\begin{document}$ {{{\rm{A}}^2}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M13.png"/></alternatives></inline-formula> transition are also calculated. The TDM at the equilibrium distance of the <inline-formula><tex-math id="M14">\begin{document}$ {{{\rm{a}}^4}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M14.png"/></alternatives></inline-formula> spin-forbidden reaches 0.036 Debye, therefore, the SOC effect plays an important role. Based on the accurate PECs and PDMs, the Franck-Condon factors, spontaneous radiative coefficients, and spontaneous radiative lifetimes of the <inline-formula><tex-math id="M15">\begin{document}$ {{{\rm{A}}^2}}{\Sigma ^ - } \to {{{\rm{X}}^2}}\Pi $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M15.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M16">\begin{document}$ {{{\rm{a}}^4}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M16.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M16.png"/></alternatives></inline-formula>, and <inline-formula><tex-math id="M17">\begin{document}$ {{{\rm{A}}^2}}\Sigma _{1/2}^ - \to {{{\rm{X}}^2}}{\Pi _{1/2}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M17.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20221104_M17.png"/></alternatives></inline-formula> transition are also calculated.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3