Non-equilibrium transport of charged particles in a wall-confined decaying plasma under an externally applied electric field

Author:

Wang Yao-Ting,Luo Lan-Yue,Li He-Ping,Jiang Dong-Jun,Zhou Ming-Sheng,

Abstract

In this work, non-equilibrium transport processes of the charged particles in a plasma confined between two parallel plates with externally applied electric fields are analyzed with the charged-particle transport of laser-induced plasma as the major research background. The theoretical analyses of the transient responses of the electrons to the externally applied electrostatic fields are conducted under different initial distributions of the plasma parameters including the loss and the oscillation frequency of the electrons in the transient oscillation process, and the critical value of the electron number density for the initial electron temperature effect of the ion transport. The particle-in-cell (PIC) modeling results are consistent well with the theoretical predictions. Based on the preceding results, the PIC simulations of the ion extraction process by imposing a radio-frequency (RF) electric field on the electrostatic field are conducted. The modeling results indicate that there exists an obvious resonance phenomenon in the ion extraction process, in which the ion extraction flux is significantly increased. Under a certain operating condition, the ion extraction time at the RF resonance point is reduced to 5.8% of its original value with only an electrostatic field. Further analysis shows that, on the one hand, the electrons will be heated by the externally applied RF electric field, and thus, the propagation velocity of the ion rarefaction wave will be increased; on the other hand, the electron oscillations will be enhanced, resulting in losing more electrons in the electron oscillation process and a higher plasma potential, which ultimately leads to a higher ion extraction flux and a shorter ion extraction time.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3