Author:
Xia Xu,Yang Juan,Geng Hai,Wu Xian-Ming,Fu Yu-Liang,Mou Hao,Tan Ren-Wei, ,
Abstract
The electron cyclotron resonance (ECR) neutralizer is an important part of the micro ECR ion thruster. The electrons extracted from the neutralizer are used to neutralize the ions extracted from the ECR ion source, thereby avoiding the surface charges accumulating on the spacecraft, and the behaviour of electron extraction affects the overall performance of the thruster. In order to investigate the electron extraction through the orifices of the micro ECR neutralizer, a two-dimensional particle-in-cell with Monte Carlo collision (PIC/MCC) model is established in this work. The effects of different magnetic circuits on the electron extraction of the neutralizer and the influence of different cavity lengths on the wall current loss are studied through numerical simulation. The effects of different magnetic circuit structures on the electron extraction and wall current loss of the neutralizer are studied. The calculation results show that the position of the ECR layer and the magnetic flux lines near the extraction orifices are very important for the electron extraction performance of the neutralizer. When the ECR layer is located upstream of the antenna, electrons are easily lost in migration and diffusion motion, and the energy required for the electrons to cross the potential well before the extraction hole is higher. If more magnetic flux lines pass parallelly through the extraction orifices, the neutralizer requires a small voltage to extract the same electron current. When the ECR layer is cut by the antenna or is located downstream of antenna, more electrons may migrate along the magnetic flux lines to the vicinity of the extraction orifices, thereby reducing the voltage of collector plate. The effects of different cavity lengths on the extraction of electrons under the same magnetic circuit structure are studied. It is found that increasing the length of the cavity allows more parallel-axis magnetic flux lines to pass through the extraction holes to avoid electron loss on the surface of the extraction plate, and thus increasing the extraction electron current. The research results conduce to designing a reasonable neutralizer magnetic circuit and cavity size.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献