Calculation of spot entroid based on physical informed neural networks

Author:

Fang Bo-Lang,Wang Jian-Guo,Feng Guo-Bin,

Abstract

To determine the centroid of far-field laser beam spot with high precision and accuracy under intense noise contamination, a positioning algorithm named centroid-PINN is proposed, which is based on physical information neural network. A U-Net neural network is utilized to optimize the centroid estimation error. In order to demonstrate this new method, Gaussian spots polluted by two kinds of noises, i.e. ramp noise and white noise, are generated by simulation to train the neural network. The neural network is tested by two kinds of spots, i.e. Gaussian spot and Sinc-like spot. Both are predicted with high accuracy. Compared with traditional centroid method, the centroid-PINN needs no parameter tuning, especially can cope with ramp noise interference with high accuracy. This work will be conducive to developing the far-field laser beam spot measurement device, and can also serve as a reference for developing the Shack-Hartmann wavefront sensor.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference25 articles.

1. Booth M J 2014 Light Sci. Appl. 3 165

2. Ji N 2017 Nat. Methods 14 374

3. Feng G B 2014 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)
冯国斌 2014 博士学位论文 (西安: 西安电子科技大学)

4. Andrews L C, Phillips R L 2005 Laser Beam Propagation Through Random Media (Bellingham, Wash: SPIE Press) p4

5. Ma X, Rao C, Zheng H 2009 Opt. Express 17 8525

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3