Author:
Niu Yan-Xiong ,Huang Feng ,Duan Xiao-Feng ,Wang Yue-Feng ,Zhang Peng ,He Chen-Juan ,Yu Ye ,Yao Jian-Quan ,
Abstract
When high power laser irradiates the infrared imaging system, the system will be injured or destroyed. The damage to the systems varies for different laser wavelengths. The infrared windows are generally coated with diamond-like carbon(DLC) thin films to protect itself and improve the permeation rate. When the incid ent laser's wavelength lies outside the infrared system response wave band, lase r destroys the DLC films firstly. The DLC films' damage mechanism induced by pul sed laser is studied with the 1.06μm laser. The thermal shock effect model of D LC films is proposed. The temperature and stress distributions are deduced throu gh solving the thermal conduction equation and stress-balance equation. The theo retical analysis shows that thermal stress fracture dominants in the damage mech anism. When the irradiation energy density is E0=100mJ·cm-2 , the pressu re on the surface of DLC films at about 40μm from the center of laser facula ex ceeds the rupture intensity, the film will break and peel off. The theoretical a nalysis matches the experimental results basically, and the correctness of the t hermal shock effect model is confirmed.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献