Feedback process study in over-sized backward wave oscillator

Author:

Li Zheng-Hong,Xie Hong-Quan, , ,

Abstract

Internal field emission breakdown in the electro-dynamic structures of high-power microwave devices can seriously limit the devices’ output power and pulse duration. So an over-sized backward wave oscillator (BWO) is developed to increase the diameter of the electro-dynamic structure beyond the cut-off radius, and reduce these internal fields to levels, which are below critical breakdown levels. As a typical high power microwave (HPM) device, the oversized BWO is widely used and investigated. But some interaction phenomena between the beam and the microwave field in the device are not clearly understood because the beam-loaded effect is so obvious. And the physical process for the interaction is also considered to be complicated. Here as an oscillator, the feedback process is very important in the microwave device, which includes the oversized BWO. So the interaction process between the beam and the oversized BWO is explored from the feed back process instead of the field in the device. Then the physical mechanism for the feedback process in the oversized BWO is explored both in theoretical investigation and in particle-in-cell simulation. And the equivalent circuit is established for such a purpose. The mode control mechanism is explored based on the equivalent circuit. Finally an over-sized backward wave oscillator with rectangular profile corrugations is designed to produce TM<sub>01</sub> high power microwave radiation without mode-competition. An RF power of 7.9 GW at a frequency of 8.68 GHz is obtained in the particle in cell simulation driven by the beam with a beam voltage of 1 MW and a current of 20 kA, and the corresponding efficiency is 39.5%.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3