Mechanism of soil environmental regulation by aerated drip irrigation

Author:

Yang Hai-Jun ,Wu Feng ,Fang Hai-Ping ,Hu Jun ,Hou Zheng-Chi , ,

Abstract

Soil is the foundation of food security, water safety and wider ecosystem security. China's water resources is featured by its poverty and uneven distribution. Flood irrigation in traditional agriculture not only uses large amount of water, but also destroys soil aggregate structure, resulting in soil degradation, such as soil compaction and soil salinization. Underground drip irrigation have obvious water saving efficiency with the effective utilization rate of water larger than 95%, but it will also destroy the soil structure to a certain extent. It has been reported in many researches that using aerated water drip irrigation can not only increase crop yields, but also improve crop quality. The influence of several factors such as the burial depth of drop head, the frequency of dripping, the amount of irrigation, the growth period of plant, the mode of aerating and the equipment and so on, and the effects of the aerated drip irrigation on the water environment, the air environment, the microbial environment, the nutrient environment and the mineral environment of soil are summarized. And the regulation mechanism of soil environment by the aerated drip irrigation is put forward. The changes in water, gas, microorganism, nutrition and minerals are the result of the change of soil structure. The experimental results of in situ synchrotron radiation X-ray computed tomography confirmed that aerated drip irrigation can change the structure of soil.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference47 articles.

1. Zhang J 2015 World Journal of Forestry 4 13

2. Sinobas L R, Rodríguez M G 2012 A Review of Subsurface Drip Irrigation and Its Management (InTech) p177 https://www.intechopen.com/books/water-quality-soil-and-managing-irrigation-of-crops/a-review-of-subsurface-drip-irrigation-and-its-management

3. Currie D R 2006 Ph. D. Dissertation (Adlaide: The University of Adelaide)

4. Niu W, Guo Q, Zhou X, Helmers M J 2011 Soil Sci. Soc. Am. J. 76 815

5. Bhattarai S P, Pendergast L, Midmore D J 2006 Sci. Hortic-Amsterdam 108 278

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3