Diffusion behavior of di-interstitials with different configurations in tungsten

Author:

Ran Qin,Wang Huan,Zhong Rui,Wu Jian-Chun,Zou Yu,Wang Jun,

Abstract

Tungsten, due to its desirable properties (high melting point, low sputtering coefficient, good irradiation resistance etc.), is considered as a promising candidate for the plasma facing materials in future nuclear fusion reactors. Therefore, it will work in extremely harsh environments because it is subjected to the bombadement of high-flux plasma particles and the irradiation of high energy neutrons, resulting in vacancies and interstitials. The migration behavior of self-interstitial atoms is one of the most important factors determining the microstructure evolution in irradiated metals because it will greatly affect the mechanical properties of materials. The study of the diffusion behavior of di-interstitials with different configurations contributes to a better understanding of the self-interstitial atom behavior in tungsten. Despite the inherent difficulty in experimental approaches, atomistic simulation provides an effective means of investigating the defect evolution in materials. In this paper, based on the newly developed interatomic potential for W-W interaction, the diffusion behavior of self-interstitial atoms in tungsten is studied by molecular dynamics simulation. This work focuses on the investigation of the diffusion behavior of di-interstitials with different configurations at different temperatures. The obtained results show that the di-interstitials with the first nearest neighbor configuration presents the one-dimensional migration in the <inline-formula><tex-math id="Z-20190530101816-19">\begin{document}$\left\langle 111 \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20190310_Z-20190530101816-19.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20190310_Z-20190530101816-19.png"/></alternatives></inline-formula> direction at temperatures below 1400 K. As the temperature increases, it makes rotations from one <inline-formula><tex-math id="Z-20190530101818-20">\begin{document}$ \left\langle 111 \right\rangle$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20190310_Z-20190530101818-20.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20190310_Z-20190530101818-20.png"/></alternatives></inline-formula>- to other <inline-formula><tex-math id="Z-20190530101823-21">\begin{document}$\left\langle 111 \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20190310_Z-20190530101823-21.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20190310_Z-20190530101823-21.png"/></alternatives></inline-formula>-directions. Thus migration of di-interstitial atoms with the first nearest neighbor configuration exhibits a change in mechanism from one-dimensional to three-dimensional migration, keeping the stable <inline-formula><tex-math id="Z-20190530101828-22">\begin{document}$\left\langle 111 \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20190310_Z-20190530101828-22.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20190310_Z-20190530101828-22.png"/></alternatives></inline-formula> configuration in the whole investigated temperature range. The migration of di-interstitial atoms with the second nearest neighbor configuration is one-dimensional along the <inline-formula><tex-math id="Z-20190530102029-23">\begin{document}$\left\langle 111 \right\rangle$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20190310_Z-20190530102029-23.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20190310_Z-20190530102029-23.png"/></alternatives></inline-formula> direction within a certain temperature range. When the temperature is above 600 K, the di-interstitial atoms will dissociate into two individual self-interstitial atoms and move independently. However, the migration of di-interstitial atoms with the third nearest neighbor configuration dissociates at a temperature just above 300 K. The non-parallel self-interstitial atoms form a sessile configuration within a certain temperature range. Once the sessile cluster is formed it can hardly move. Interestingly, it will transform into mobile defect when the temperature is higher than 1000 K. By comparing the migration energy values of these configurations obtained by nudged elastic band method with those of the Arrhenius fits, we find that the diffusivity for each of single- and di-interstitial atoms in tungsten is a linear function of temperature rather than Arrhenius as usually assumed.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3