Dynamic reconstruction of chaotic system based on exponential weighted online sequential extreme learning machine with kernel

Author:

Li Jun,Hou Xin-Yan,

Abstract

For the dynamic reconstruction of the chaotic dynamical system, a method of identifying an exponential weighted online sequential extreme learning machine with kernel(EW-KOSELM) is proposed. The kernel recursive least square (KRLS) algorithm is directly extended to an online sequential ELM framework, and weakens the effect of old data by introducing a forgetting factor. Meanwhile, the proposed algorithm can deal with the ever-increasing computational difficulties inherent in online kernel learning algorithms based on the ‘fixed-budget’ memory technique. The employed EW-KOSELM identification method is firstly applied to the numerical example of Duffing-Ueda oscillator for chaotic dynamical system based on simulated data, the qualitative and quantitative analysis for various validation tests of the dynamical properties of the original system as well as the identification model are carried out. A set of qualitative validation criteria is implemented by comparing chaotic attractors i.e. embedding trajectories, computing the corresponding Poincare mapping, plotting the bifurcation diagram, and plotting the steady-state trajectory i.e. the limit cycle between the original system and the identification model. Simultaneously, the quantitative validation criterion which includes computing the largest positive Lyapunov exponent and the correlation dimension of the chaotic attractors is also calculated to measure the closeness i.e. the approximation error between the original system and the identification model. The employed method is further applied to a practical implementation example of Chua's circuit based on the experimental data which are generated by sampling and recording the measured voltage across a capacitor, the inductor current from the double-scroll attractor, the measured voltage across a capacitor from the Chua's spiral attractor and an experimental time series from a chaotic circuit. The digital filtering technique is then used as a preprocessing approach, on the basis of wavelet denoising the measured data with lower signal-noise ratio (SNR) which can produce the double-scroll attractor or the spiral attractor, the reconstruction attractor of the identification model is compared with the reconstruction attractor from the experimental data for original system. The above experimental results confirm that the EW-FB-KOSELM identification method has a better performance of dynamic reconstruction, which can produce an accurate nonlinear model of process exhibiting chaotic dynamics. The identification model is dynamically equivalent or system approximation to the original system.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3