Ultraviolet picosecond conversion efficiency improvement system at 355 nm based on fundamental frequency laser amplified

Author:

Zhang Xu-Dong,Chu Yu-Xi,Jia Wei,Hu Ming-Lie,

Abstract

In recent years, picosecond laser in ultraviolet (UV) has manifested great importance for applications both in science and industry, such as biomedical research, micro machining, etc. Now, the well proven approach to generating ultra-short UV pulses is extra-cavity frequency conversion based on nonlinear optical (NLO) crystal, due to the lack of suitable laser sources directly generating UV laser. In this process of harmonic generation, the length of nonlinear crystal is an important factor affecting the conversion efficiency and beam-quality. The optimal length of the nonlinear crystal is influenced by incident laser parameters and crystal absorption coefficient. At present, for the UV 355 nm picosecond laser generated from extra-cavity sum frequency, published are few reports about detailed analysis and research on the influence of photon ratio of the incident laser beams and nonlinear crystal absorption on optimal length of sum frequency crystal. In this paper, the steady-state solutions with the highest conversion efficiency under different incident conditions are obtained by theoretical analysis and numerical simulation of the three waves coupling equations. The effects of different photon ratios and absorption effect of the sum frequency crystal on the optimum crystal length are analyzed. We propose a solution based on the fundamental frequency laser amplified to shorten crystal length and improve conversion efficiency. In this scheme, the 532 nm second harmonic laser with a high conversion efficiency over 65% can be achieved by LiB<sub>3</sub>O<sub>5</sub> crystal. After that, the 1064 nm fundamental frequency laser is separated from the second harmonic laser, and then it is amplified by the Nd:YVO<sub>4</sub> laser crystal pumped by an 808 nm laser diode. Finally, the ultraviolet 355 nm picosecond laser is obtained by combining the 1064 nm fundamental frequency laser with the 532 nm second harmonic laser in the LiB<sub>3</sub>O<sub>5</sub> crystal. The simulation results show that the incident photon ratio of the sum frequency reaction can be changed by amplifying the residual fundamental frequency laser, and the optimum length of the sum-frequency crystal corresponding to the highest conversion efficiency can be shortened. Meanwhile, the absorption and walk-away effect of the sum frequency crystal can be also reduced. The final 355 nm laser output power can be increased more than 40 percent compared with the traditional scheme of early reports. In consequence, the high sum frequency conversion efficiency of the UV 355 nm picosecond laser can be obtained by changing the photo ratio of the incident laser beams through amplifying the fundamental frequency laser.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3