Effect of plume motion path on heat transfer characteristics in two-dimensional turbulent thermal convection

Author:

Bao Yun,He Jian-Chao,Gao Zhen-Yuan,

Abstract

The Grossman and Lohse (GL) theory is an important theory for studying the heat transfer characteristics of the turbulent convection. Previous computational studies have found that when the Ra number is higher than a certain value, the change of the heat transfer Nu number with Ra number in two-dimensional turbulent thermal convection is different from that in the three-dimensional thermal convection, deviating from the multiples line of the GL theory prediction. Therefore, the value of studying the two-dimensional numerical calculation of turbulent thermal convection with high Ra number is questioned. The numerical calculations of a series of two-dimensional turbulent thermal convection events with high and very high Ra number(specifically, maximum Ra = 10<sup>13</sup> with Pr = 0.7 and 4.3) are carried out in this paper. The results show that there exists a good correlation between the heat transfer Nu number and the variation of large scale circulation path length(that reflects the plume motion) with Ra number in the two-dimensional turbulent convection, and they have two Ra number transition points. The first transition point appears in the large scale circulation from the ellipse to the circle, when its circumference C<sub>LSC</sub> of the large scale circulation suddenly decreases with Ra number increasing. The second transition point appears at the minimum circumference C<sub>LSC</sub>, and then the plume rheology becomes vortex group and the circumference C<sub>LSC</sub> increases with Ra number increasing. The Ra number at transition point for a smaller Pr number is lower. The variation of the heat transfer Nu number after Ra<sup>0.3</sup> compensation shows that the local scale law of Nu number decreases as the circumference C<sub>LSC</sub> of the large scale circulation becomes small, and a phenomenon of deviating from the multiples line of GL theory prediction appears. When Ra number is higher than the second transition point, the local scale law of the Nu number varying with Ra number is in good agreement with the multiples line of GL theory prediction again in 2D turbulent thermal convection. It means that the numerical results of two-dimensional turbulent thermal convection can correctly reflect the heat transfer characteristics of turbulent thermal convection under the condition of very high Ra number.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3