Author:
Bao Yun,He Jian-Chao,Gao Zhen-Yuan,
Abstract
The Grossman and Lohse (GL) theory is an important theory for studying the heat transfer characteristics of the turbulent convection. Previous computational studies have found that when the Ra number is higher than a certain value, the change of the heat transfer Nu number with Ra number in two-dimensional turbulent thermal convection is different from that in the three-dimensional thermal convection, deviating from the multiples line of the GL theory prediction. Therefore, the value of studying the two-dimensional numerical calculation of turbulent thermal convection with high Ra number is questioned. The numerical calculations of a series of two-dimensional turbulent thermal convection events with high and very high Ra number(specifically, maximum Ra = 10<sup>13</sup> with Pr = 0.7 and 4.3) are carried out in this paper. The results show that there exists a good correlation between the heat transfer Nu number and the variation of large scale circulation path length(that reflects the plume motion) with Ra number in the two-dimensional turbulent convection, and they have two Ra number transition points. The first transition point appears in the large scale circulation from the ellipse to the circle, when its circumference C<sub>LSC</sub> of the large scale circulation suddenly decreases with Ra number increasing. The second transition point appears at the minimum circumference C<sub>LSC</sub>, and then the plume rheology becomes vortex group and the circumference C<sub>LSC</sub> increases with Ra number increasing. The Ra number at transition point for a smaller Pr number is lower. The variation of the heat transfer Nu number after Ra<sup>0.3</sup> compensation shows that the local scale law of Nu number decreases as the circumference C<sub>LSC</sub> of the large scale circulation becomes small, and a phenomenon of deviating from the multiples line of GL theory prediction appears. When Ra number is higher than the second transition point, the local scale law of the Nu number varying with Ra number is in good agreement with the multiples line of GL theory prediction again in 2D turbulent thermal convection. It means that the numerical results of two-dimensional turbulent thermal convection can correctly reflect the heat transfer characteristics of turbulent thermal convection under the condition of very high Ra number.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献